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Satellite imagery, known for its high resolution and abundant informational content, presents 

unique opportunities for observation and reconstruction via compressed sensing. Despite the 

potential, inherent limitations in current compressed sensing observation matrices pose 

substantial challenges, primarily attributed to pronounced random fluctuations and 

inadequate robustness. Moreover, these matrices remain unsuccessful in eliminating spectral 

correlations. To mitigate these challenges, an innovative approach, rooted in Orthogonal 

Trigonometric Decomposition and Karhunen-Loève Transform, is proposed, hereafter 

referred to as QRKL. This method demonstrates a marked improvement in optimizing the 

observation matrix, which is pivotal in compressed sensing specifically in the context of 

satellite image observation and reconstruction. Experimentally, when applied as the 

observation matrix, the QRKL transform matrix was observed to significantly enhance the 

reconstruction quality, stability, and anti-interference capabilities of satellite images. These 

improvements were noticeably superior compared to those achieved with standard 

observation matrices such as Gaussian and Bernoulli matrices. Furthermore, the utility of 

the QRKL optimization method extends beyond specific matrices, demonstrating a broad 

applicability to traditional observation matrices. This universal application implies that the 

QRKL method could potentially revolutionize compressed sensing practices in satellite 

imagery, leading to improved image reconstruction quality. The compelling results of this 

investigation suggest that QRKL transform-based optimization could provide a novel and 

powerful tool for advancing satellite imagery compressed sensing methodologies, thereby 

pushing the boundaries of the current state of the art. 
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1. INTRODUCTION

Satellite images offer a wealth of information and high 

resolution, making them valuable in various applications, such 

as resource detection for oceans, forests, and minerals; real-

time monitoring for agriculture, forestry, and animal 

husbandry; and professional map creation in the field of 

science and technology [1-6]. However, due to the large 

volume of data in satellite images and interference from 

atmospheric clouds, processing and transmitting these images 

remains a focal point for researchers [7, 8]. As a result, 

compressed sensing is employed in satellite image processing 

to observe the extensive image information, sampling the 

image with fewer data points than Nyquist's theorem requires 

while maintaining minimal informational redundancy, 

allowing for complete signal reconstruction [9, 10]. 

Current research in compressed sensing theory 

encompasses three main directions: the construction of sparse 

bases, the creation of observation matrices, and the selection 

and optimization of recovery algorithms [11-13]. Among these, 

the design of the observation matrix is crucial for compressed 

sensing observation of satellite images, as it determines both 

the compression ratio of the information and the preservation 

of image information after compression and transmission. 

Satellite images collect complex ground information, 

differing from conventional panchromatic two-dimensional 

images. The high resolution and wide coverage of satellite 

images result in a significant increase in data volume, 

necessitating efficient compressed sensing algorithms and 

observation matrices tailored to the specific features of 

satellite images. This ensures not only substantial data 

compression during transmission but also complete image 

reconstruction at the receiving end. 

Commonly used observation matrices in compressed 

sensing research include Gaussian random matrix and 

Bernoulli random matrix [14]. While these observation 

matrices can effectively reconstruct general two-dimensional 

images, satellite images present a significantly larger data 

volume and possess interspectral correlation in addition to 

spatial redundancy [15]. Employing compressed sensing 

algorithms with a random matrix as the observation matrix can 

effectively remove spatial redundancy and achieve signal 

sparsity due to their perfect randomness. However, 

interspectral redundancy remains unaffected. 

To address this limitation, we propose an optimization 

method for QRKL observation matrix. This optimized matrix 

retains the randomness of Gaussian measurement matrix while 

incorporating the ability of KL transform to effectively 

remove interspectral correlation in satellite images. The goal 

is to construct an observation matrix suitable for satellite 
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image characteristics. The QRKL observation matrix 

optimization method presented in this paper can increase the 

maximum value by 2.6-3.3dB, the minimum value by 2.8-

3.8dB, and the overall mean value of 50 measurements by 

approximately 3.5dB, as well as improve the correlation 

coefficient by about 5%. This results in a reconstructed image 

that is closer to the original image compared to other 

measurement matrices. 

 

 

2. COMPRESSED SENSING THEORY 

 

Compressed sensing breaks the traditional Nyquist theorem 

on the basis of sparse theory. If the observed signal is sparse 

or compressible, a low-dimensional observation matrix is set, 

the signal is projected into the low-dimensional space then the 

known observation matrix and sparse basis are used to 

reconstruct the original signal by using the idea of norm 

approximation. The specific process block diagram is as 

shown in Figure 1 [16]. 

 

 

 
 

Figure 1. Block diagram of compressed sensing principle 

 

Compressed sensing observation of the signal proceeds as 

follows the original signal x, length N, and the observation 

matrix Φ, M×N dimensional matrix with M≫N. the premise of 

the compressed sensing observation signal is x sparse, or 

compressible signal. If x contains k non-zero values, M≫K and 

K is called the sparsity of the signal. Ψ is used as sparse 

training sequence, and the original signal x can be represented 

by a sparse training sequence Ψ and a set of transformed 

column vectors θ denoted by. 

 
x =  (1) 

 

The measurement matrix Φ is used to observe the original 

signal x and get the measured value y. 

 
y x=   (2) 

 

Combining above two equations to get 

 
y x  =  = =   (3) 

where, Γ=Φ⋅Ψ, the dimension is M×N. 

The reconstruction of compressed sensing can be seen as the 

restoration of the original signal x by using the measured value 

y, the observation matrix Φ and the training sequence Ψ, using 

different algorithms. This process can be performed by solving 

the norm. the transformed column vector of the estimated 

signal x is obtained 

 

, ( 1,2, )x i m
i i
 = =  (4) 

 

θi Satisfying the relationship equation 
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The norm number 𝑙𝑝 is an important concept at compressed 

sensing representing the sparsity of non-zero elements in the 

solution vector, when the values of p are taken differently, the 

effects of norm 𝑙𝑝 reconstructions will be different. The norm 

𝑙0 is commonly used for reconstruction. By solving for norm 

𝑙0, the reconstruction process of compressed sensing can be 

described by the following model. 

 

0
ˆ arg min    x x subject to y x= =   (6) 

 

There are many kinds of reconstruction algorithms for 

compressed sensing. Including BP, MP, SP, OMP, SBL, etc. 

Integrating the performance of various algorithms, we adopt 

the OMP algorithm as the reconstruction algorithm of 

compressed sensing for satellite image observation in this 

paper. 

 

 

3. QRKL TRANSFORM-BASED OPTIMAL DESIGN 

FOR SATELLITE IMAGE OBSERVATION MATRIX 

 

The theory of construction of the observation matrix for 

compressed sensing has been emphasized by researchers. Its 

design concept was proposed by Candes and Tao [17], the 

reconstruction signal of compressed sensing is unique and 

accurate under the condition that the observation matrix 

satisfies a specific finite isometric constant (Restricted 

Isometry Constant, RIC). Traditional compressed sensing used 

Gaussian random matrix at most at most as the observation 

matrix. The Gaussian random matrix is simple to generate the 

size of the observation matrix can be adjusted at any time 

according to the image size. Due to the random generation of 

matrix the observation matrix is almost completely unrelated 

to the sparse basis, so it can be reconstructed for any image. 

However, due to the randomness of Gaussian matrix, the 

observed signal is easy to affected by external noise and has 

poor anti-interference capability and no removal for the high-

spectral correlation of satellite images. The main idea of this 

paper is to optimize the Gaussian random matrix by QR 

decomposition and KL transformation. The QR 

decomposition preserves the random characteristic part of the 

Gaussian matrix, so that the optimized matrix still maintains 

the non-correlation with the sparse basis while satisfying RIP 

condition, after that the QR optimized matrix is further KL 

transformed and the nature of the KL transform is used to 

remove the spectral correlation of satellite image in the 

observation process principle in as follows. 
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Our aim is to add the property of removing the inter spectral 

correlation on the basis of eliminating spatial correlation of 

traditional Gaussian observation matrix, so that the perfect 

randomness of Gaussian matrix can not be changed. We first 

perform QR decomposition on the Gaussian matrix [18], QR 

decomposition can increase the singular value of the matrix 

without changing the property if the matrix, namely: 
 

A QR=  (7) 
 

This process decomposes the matrix into two parts, Q and 

R, where Q is an Orthonormal matrix and R is an trigonometric 

matrix. The QR decomposition of the matrix is calculated 

linearly as follows  
 

Au ( )b QR u b=  =  (8) 

 
1 1 TQ QRu Q b Ru Q b− −=  =  (9) 

 

Perform the Gram-Schmidt procedure on each column of 

matrix A to get orthogonal vectors form 𝑝1, 𝑝2, ⋯ , 𝑝𝑛 , 

normalize it to get orthonormal vector 𝑞⃗1,𝑞⃗2, ⋯ , 𝑞⃗𝑛, Form an 

orthonormal matrix Q. 
 

1A QR Q A R−=  =  (10) 
 

From the orthogonal matrix property, we may get: 
 

1 TR Q A R Q A−=  =  (11) 
 

The precondition that the matrix can be decomposed on QR 

is that the individual column vectors of A are linearly 

independent and the Gaussian observation matrix is randomly 

generated to satisfy this condition. We can decompose QR on 

Gaussian random matrix. Though QR decomposition we 

transform the Gaussian random matrix into an upper triangular 

matrix, which not only get the accurate and stable feature 

description of Gaussian random matrix, but also retains the 

random features of Gaussian matrix to the greatest extent, 

keeping the feature that the Gaussian observation matrix can 

remove the spatial correlation of the image. In the following, 

we continue to perform the KL transformation on it. 

KL transformation is also called feature vector 

transformation or Hotelling transformation. It takes the 

orthogonal matrix composed of the covariance eigenvector of 

the original data as the transformation matrix to carry out the 

orthogonal transformation of the original data [19]. It makes 

most of the covariance matrix of the transformed data to be 

equal to 0 or approximately equal to 0, except for the diagonal. 

That is the original inter-pixel spectral correlation is weakened 

to a large extent [20]. Below, we apply KL-transformation to 

the upper triangular matrix R transformed by QR in Eq. (11) 

and the covariance matrix of R is: 
 

   D( , ) ( ) ( )i i j j i j i ji j E R v R v E R R v v= − • − = −  (12) 

 

where, 𝑣𝑖 = 𝐸{𝑅𝑖} is the mean of 𝑅𝑖 , since 𝐷(𝑖, 𝑗) = 𝐷(𝑗, 𝑖), 

the covariance matrix D is a real symmetric matrix. For an n 

order matrix  
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(13) 

The n-dimensional non-zero column vector in the above 

equation, 𝛽 = [𝛽1 𝛽2 ⋯ 𝛽𝑛]𝑇 . If there is a number 𝛾 , 

such as 

 
D =  (14) 

 

where, 𝛾  is the eigenvalue of matrix D and 𝛽  is the 

eigenvector corresponding to the eigenvalue of matrix D, there 

must be an orthogonal matrix G such that 
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(15) 

 

Taking the above formula, the eigenvalues and eigenvectors 

of matrix D can be got by iterative method. The eigenvalues 

are arranged in descending order as follows: 

 

1 2 n      (16) 

 

where, n eigenvalues correspond to n eigenvectors, taking 

them as the basis vector of KL transformation, the 

transformation matrix of KL can be obtained as follows:  

 

1

2

T

T

T

n

T







=  (17) 

 

Afterwards, the new matrix obtained by multiplying the 

transformation matrix T of KL by the matrix R minus the mean, 

we obtain the result of the KL transformation of the upper 

triangular matrix R, as shown in the following equation: 

 

( )L T R v= −  (18) 

 

KL is an excellent transformation method in the sense of 

eliminating the minimum mean square error of correlation in 

images. In the KL transformation domain of two-dimensional 

images most of the energy is concentrated on a few 

transformation coefficients. Therefore, we further transform 

KL by changing the triangular matrix R after QR transformed 

and get QRKL+Gaussian matrix, the optimized new 

observation matrix retains the randomness and non-correlation 

of Gaussian matrix, which can eliminate the spatial 

redundancy in data, and has the feature that can reduce the 

correlation in data spectra, which is especially suitable for CS 

observation of satellite images. 

The QRKL optimization step for the specific observation 

matrix are as follows:  

(1) Input the original satellite image x, judge the image 

dimension, if x>2, then make the grayscale processing of the 

image. 

(2) Due to the huge amount of data in satellite images x, 

further imresize scaling of the images are performed. 

(3) Set the Fourier transform matrix as the sparse basis 𝛹, 

𝛹 ∈ 𝑅𝑁×𝑁, to sparse the image. 

(4) Generate a random matrix 𝛷that matches the standard 

normal distribution 𝑓(𝑥) = 𝑎𝑒−(𝑥−𝑏)2/𝑐2
.  

(5) The generated Gaussian random matrix 𝛷is used as the 
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observation matrix. 𝛷 ∈ 𝑅𝑀×𝑁, rank (𝛷)=𝜔, 𝜔 ≤ 𝑁. 

(6) The random matrix 𝛷 is QR decomposed 𝛷 = QR and 

the upper triangular matrix R is obtained according to the 

property of orthogonal transformation 𝑅 = 𝑄𝑇𝛷. 

(7) The matrix R generated by the decomposition of 𝛷 

through QR is transformed on KL, according to the Eq. (18), 

𝐿 = 𝑇(𝑅 − 𝑣)  and L is used as the optimized observation 

matrix to observe x. 

 

   

   

   

   

   

   

(a) Original satellite 
(b) Reconstructed images of 

Gaussian matrix 

(c) Reconstructed images of 

QRKL+Gaussian matrix 

 

Figure 2. Reconstructed images of satellite images before and after QRKL optimization of Gaussian matrix 
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4. EXPERIMENTAL SIMULATION AND ANALYSIS  

 

4.1 Effective analysis of QRKL optimized Gaussian matrix 

on reconstruction quality improvement 

 

In order to verify the effectiveness of the algorithm in this 

paper we take simulation tests below. The compressed sensing 

algorithm is used to the construct and analyze the satellite map. 

The reconstruction algorithm is OMP and the sparse basis is 

Fourier transform matrix. The observation matrix of 

compressed sensing adopts the QRKL+Gaussian matrix and 

Gaussian random matrix in this paper, to observe the original 

satellite images, the obtained original and reconstructed 

satellite images are shown in Figure 2(a)-(c). 

By comparing the original images with the Gaussian matrix 

reconstruction, as well as the images optimized by the QRKL 

method proposed in this paper, it can be known that the 

reconstructed effect of QRKL+Gaussian random matrix 

proposed in this paper is more optimized visually than 

Gaussian random matrix, especially the edges of the Gaussian 

matrix reconstructed images are very blurred while the detail 

part of the edges in reconstructed method is clearer in this 

paper. In order to get the quantitative enhancement effect, for 

the observation matrix of the compressed sensing, we select 

more different types of matrices as comparison respectively 

using six matrices such as Gaussian random matrix, Bernoulli 

random matrix, part Hadamard matrix sparse random matrix, 

circulant matrix and QRKL+Gaussian matrix proposed in this 

paper. And PSNR, the evaluation index of image signal is used 

for satellite images, the expression is as follows: 

 

 
2

10lg
MAXI

PSNR
MSE

=  (19) 

 

where, MAXI is the maximum gray value of the images, MSE 

is the mean square error, PSNR(dB) is the maximum peak 

signal-to-noise ratio, the larger the PSNR value the smaller the 

transmission loss of satellite image, and the better the 

reconstruction effect. Figure 3 shows the reconstructed PSNR 

values obtained from 50 measurements of the six observation 

matrices. 

 

 
 

Figure 3. PSNR comparison to 50 times reconstructed 

images with different observation matrices 

 

From the above figure, it can be known that the 

reconstruction effect of circulant matrix sparse random matrix, 

Bernoulli matrix and Gaussian random matrix are similar, and 

the reconstruction effect of part Hadamard matrix is slightly 

better and the PSNR is about 0.5-1dB higher than first three 

matrices. While the QRKL+Gaussian matrix proposed in this 

paper not only maintains the randomness of Gaussian 

measurement matrix through QR transformation but also 

incorporates the features of KL transform which can 

effectively remove the correlation in satellite image spectra. 

The CS reconstruction of satellite image is better than the 

traditional observation matrix reconstruction, and the PSNR is 

improved about 3.5dB, we have a look at the statistical 

features analysis of the data reconstructed for 50 times by 6 

matrices though Table 1. 

 

Table 1. Statistical features analysis of PSNR data from 50 measurements of different matrices 

 

PSNR 
QRKL+Gaussian 

matrix 

Gaussian random 

matrix 

Bernoulli 

random matrix 

part Hadamard 

matrix 

Sparse random 

matrix 

Circulant 

matrix 

Maximum value (dB) 27.42 24.19 24.09 24.75 24.21 24.38 

Minimum value (dB) 27.34 23.59 23.73 24.48 23.74 23.68 

Mean value (dB) 27.38 23.89 23.93 24.62 23.90 24.07 

correlation coefficient 0.9587 0.9074 0.9108 0.9268 0.9117 0.9171 

Increase of correlation coefficient 0 5.65% 5.26% 3.44% 5.16% 4.54% 

 

By the statistical features of PSNR including maximum 

value, minimum value, mean value, and correlation coefficient 

represent the degree of correlation between the reconstructed 

images and the original images. When its value is 1, it means 

the two images are exactly the same. Therefore, the closer the 

correlation coefficient is to 1, the better the quality of image 

reconstruction quality is. We can know from the data in table 

2 that comparing with the other 5 observation matrices the 

maximum value and minimum value of the partial 

QRKL+Gaussian matrix proposed in this paper increase by 

2.6-3.3dB, 2.8-3.8dB. The overall mean value for 50 

measurements increases by about 3.5dB and the correlation 

coefficient increases by about 5%, indicating that the 

reconstructed image of QRKL+Gaussian is closer to the 

original image than the other measurement matrices. From the 

statistical results of the data, the improvement in the accuracy 

of image reconstruction is not accidental, but consistent and 

systematic. It indicates that the optimization method of QRKL 

in this paper can reduce the loss of information in satellite 

images in transmission and improve the reconstructed image 

quality of satellite images. 

 

4.2 Stability analysis of QRKL optimizing Gaussian matrix 

in reconstruction effect 

 

In the following, we further analyze the impact of the QRKL 

optimization method the stability of the system. We take 

Gaussian matrix and QRKL+Gaussian matrix as measurement 

matrices to reconstruct the satellite map image for 50 times, 

while the reconstruction algorithm and sparse basis is 
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unchanged. Figure 4 shows the average deviation of PSNR 

reconstructed by the two observation matrices, which can 

reflect the volatility of the reconstruction effect. From Figure 

4 we can see that the average deviation of Gaussian matrix is 

between 0 and 0.6 dB; while the average deviation of 

QRKL+Gaussian matrix is between 0 and 0.5. This is due to 

the addition of QRKL optimization decomposition. Under the 

premise of maintaining the randomness of Gaussian matrix, 

the instability generated by random measurement data of 

Gaussian matrix is greatly eliminated, and its robustness is 

substantially improved. 

Next, we introduce standard deviation and variance to 

measure the volatility of the data from 50 measurements in 

different observation matrices. The standard deviation 

measures the amount of variation in a set of value, low 

standard deviation means the value size is close to the mean 

value of the set and high standard deviation means the value 

range is wide. The variance, on the other hand, is the expected 

value of the data`s deviation from the square of its mean, it 

measures the difference between a set of numbers and its mean. 

Thus, the higher the standard deviation and variance, the 

greater the volatility of a reconstructed set of data around the 

mean and it is susceptible to interference. The smaller the 

standard deviation and variance, the smaller the volatility of 

the data around the mean, and the more stable the 

reconstruction effect. Table 2 shows the PSNR variance and 

standard deviation for 50 measurements of 6 different 

observation matrices, Gaussian random matrix, Bernoulli 

random matrix, part Hadamard matrix, sparse random matrix, 

circulant matrix and QRKL+Gaussian matrix in this paper. 

 

 
 

Figure 4. PSNR mean deviation for different observation 

matrices 

 

Table 2. PSNR variance and standard deviation of the measured data from 6 different observation matrices 

 

Statistical 

character 

QRKL+Gaussian 

matrix 

Gaussian 

random matrix 

Bernoulli 

random matrix 

part Hadamard 

matrix 

Sparse random 

matrix 
Circulant matrix 

Variance 2.95×10-4 1.31×10-2 8.17×10-3 6.11×10-3 9.29×10-3 1.96×10-2 

Standard Deviation 0.0172 0.1144 0.0904 0.0782 0.0964 0.1399 

 

From the tabular data, it can be known that after 50 times 

reconstruction of satellite image measurements the variance of 

Gaussian matrix, Bernoulli matrix, part Hadamard matrix, 

sparse random matrix and circulant matrix is between 2.95 × 

10-2 ~ 6.11 × 10-3. the standard deviation is between 0.08 and 

0.14. the overall volatility of Gaussian matrix and circulant 

matrix is the largest and the overall volatility of part Hadamard 

matrix is the smallest, compared with these traditional 

matrices, the variance of QRKL+Gaussian matrix proposed in 

this paper is 2.95 × 10-4, which is two orders of magnitude 

lower than the volatility of Gaussian and circulant matrices 

and one order of magnitude lower than the volatility of the part 

Hadamard matrix. The standard deviation is also reduced from 

0.14 to 0.017. It can be seen that, compared with the 

conventional observation matrix, the variance and standard 

deviation of the QRKL matrix for satellite image 

reconstruction are greatly reduced, the overall fluctuation 

amplitude is reduced by one order of magnitude which greatly 

enhances the robustness and improves the ability of signal to 

resist noise. 

 

4.3 Generalization analysis to the effect of QRKL 

optimization method on other matrix optimizations 

 

We will still study the optimization effect of the QRKL 

optimization method on other random matrices. We select the 

Bernoulli matrix, part Hadamard matrix and circulant matrix 

as the matrices to be optimized, which are representative of the 

completely random, partially deterministic and deterministic 

matrices. We adopt the QRKL method in this paper to 

optimize the three matrices respectively. Through the 

comparison of the effect of the three observation matrices to 

reconstruct satellite images, we analyze the optimization effect 

of the QRKL optimization method in this paper on other 

observation matrices except Gaussian random matrix.  

Through three observation matrices, namely, Bernoulli 

matrix part Hadamard matrix and circulant matrix the satellite 

images reconstructed by CS and the reconstructed image of 

observation matrix optimized by QRKL are compared as 

shown in Figure 5 (a)-(f). 

From the comparison of the above figures, it can be seen 

that the construction of the three traditional observation 

matrices all have grainy edges with lines and blurred details, 

while the reconstructed images optimized by QRKL have no 

lines on the visual edge, and the details are clearer. So, the 

QRKL method proposed in this paper has visual optimization 

effect on the reconstruction of different observation matrices. 

Next we further analyze the quantitative PSNR data, and 

perform QRKL optimization on the Bernoulli matrix, part 

Hadamard matrix, and circulant matrix respectively, the 

reconstructed PSNR we obtain from 50 times measurement is 

shown in Figures 6-8. 

From Figures 6-8, it can be seen that the QRKL transform 

can improve the PSNR about 3.5dB. For Bernoulli matrix, part 

Hadamard matrix and circulant matrix by optimizing the 

reconstruction quality of the original satellite image is steadily 

improved after optimizing these observation matrices by the 

QRKL transform which indicates that the QRKL optimization 

method for the conventional observation matrix is generally 

applicable. From Figure 9, moreover, the original part 

Hadamard matrices are better optimized for the original 

images than the Bernoulli matrix and circulant matrix, and the 

reconstruction results obtained after QRKL transformation are 

also best for the QRKL+Hadamard matrices at the same time, 

which the QRKL transformation does not destroy the superior 

properties from the original observation matrices. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 5. Reconstructed images in satellite images before and after optimization by QRKL for 3 different observation matrices 

(a) Bernoulli matrix; (b) Part Hadamard matrix; (c) Circulant matrix; (d) QRKL+Bernoulli matrix; (e) QRKL+part Hadamard 

matrix; (f) QRKL+circulant matrix 
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Figure 6. The comparison of the effect on Bernoulli 

observation matrix optimization for QRKL transformation 

Figure 7. The comparison of the effect on part Hadamard 

observation matrix optimization for QRKL transformation 

Figure 8. The comparison of the effect on circulant 

observation matrix for QRKL transformation 

Figure 9. The comparison of the effect on observation 

matrix for QRKL transformation 

5. CONCLUSION

In this study, the advantages of QR transform and KL 

transform are combined in a proposed observation matrix 

optimization method based on QRKL transform. By taking the 

QRKL transform matrix as the compressed sensing 

observation matrix, satellite images with multiple correlation 

features are observed and reconstructed. Experimental results 

indicate that, when compared to commonly used observation 

matrices such as Gaussian matrix, Bernoulli matrix, part 

Hadamard matrix sparse random matrix, and circulant matrix, 

the QRKL transform matrix improves the PSNR of the 

reconstructed image by approximately 3.5 dB and enhances 

the accuracy of satellite image reconstruction by 14.6%. 

Additionally, the fluctuation amplitude of data is reduced from 

0.14 to 0.017. These findings suggest that the QRKL transform 

matrix not only improves the reconstruction quality of satellite 

images but also enhances the stability and noise resistance of 

the signal. 

While the QRKL optimization method appears to be 

universally applicable to conventional observation matrices, 

the KL transform lacks a fixed basis and has a complex 

algorithm with intensive computing requirements. Further 

research is needed on reducing the operational complexity and 

improving hardware technology development to make the 

implementation of the algorithm in hardware feasible. 
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