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Endoscopy is a widely employed technique for the diagnosis and treatment of various 

internal organs in the human body, including the gastrointestinal tract, lungs, bones, and 

abdominal region. During the procedure, an illuminated optical device records video data, 

which assists physicians during real-time analysis and post-procedure evaluations. 

Identifying areas of interest within the vast amount of recorded video data is critical for 

optimizing physicians' focus and time. A key task in this process involves classifying 

endoscopic frames as normal or abnormal. Current solutions for endoscopic frame 

classification either rely solely on handcrafted features or neural network features and lack 

efficient pre-processing techniques to eliminate irrelevant frame portions or enhance 

relevant region features. This study presents an innovative architecture pipeline for the 

efficient and robust detection of abnormal frames in endoscopic videos, combining 

effective pre-processing techniques with deep neural networks. A novel and customized 

pre-processing method has been integrated into three custom-tailored deep architectural 

pipelines, which are based on sequential convolutional networks, InceptionResNet, and 

EfficientNet. Models generated using these pipelines were trained and tested on custom-

curated data from publicly available repositories. Among the three pipelines, the 

architecture based on EfficientNet outperformed current state-of-the-art approaches, 

achieving a sensitivity, specificity, and accuracy of 0.94, 0.91, and 0.93, respectively, for 

the classification of abnormal frames. This novel approach demonstrates the potential of 

leveraging advanced deep learning architectures to enhance abnormality detection in 

endoscopic videos. 
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1. INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged as 

the state-of-the-art technique for extracting off-the-shelf 

features from images. These features encompass a wide range, 

from high-level attributes representing abstract and complex 

aspects, such as objects, scenes, and concepts that can be 

recognized and interpreted by humans, to nuances of the image, 

including color, texture, shape, and edge information. The 

comprehensive range of feature extraction facilitated by CNNs 

offers a distinct advantage compared to hand-crafted features 

obtained through traditional image processing techniques. 

Features extracted from CNNs can be employed in 

classification tasks to categorize images as belonging to 

specific classes, as well as in segmentation tasks to isolate and 

highlight relevant portions of an image. Over the past decade, 

the ImageNet challenge [1] has led to the development of 

numerous standard CNN architectures that have demonstrated 

remarkable results. These architectures comprise sequential 

blocks of convolution, pooling, and fully connected layers that 

can be combined in various sequences, functioning as plug-

and-play units of a puzzle that can be connected in diverse 

configurations to generate customized architectures. 

Training CNNs for classification and segmentation tasks 

necessitates a substantial amount of labeled data. The result of 

this training process is a trained neural network model with 

specific weights associated with each edge in the network. 

These neural network weights represent the learned feature 

matrix, which facilitates classification and segmentation tasks 

on test or unknown data sets. CNN architectures are employed 

to generate trained models with learned weights, either from 

scratch or by using pre-trained models for transfer learning. 

Incorporating transfer learning is advantageous as it promotes 

rapid convergence by offering a relevant starting point for 

training the model. 

Abnormality detection in endoscopy video frames serves as 

an initial step in assisting medical professionals with analysis. 

Existing solutions for abnormality classification rely on either 

traditional image processing techniques or deep learning-

based methods. However, these approaches often lack a focus 

on customizing the classification process for the endoscopy 

domain. Moreover, an ensemble of computer vision-based 

techniques and deep architectures could enhance the efficiency 

of abnormality classification. To address this, three deep 

architecture pipelines have been implemented and tested on 

curated endoscopy image data for the purpose of abnormality 

detection as a classification problem. 

Data from several publicly available resources have been 

collected for this work. The collected data has been curated to 

include the categories of normal and abnormal endoscopy 

frames. The three pipelines implemented are CNN sequential 

architecture, Inception-Resnet architecture [2], and 

Efficientnet B0 architecture [3]. These three pipelines have 

been customized and experimented with several computer-

vision-based pre-processing techniques like multi-channel 

mixing, histogram equalization, morphological operation, and 
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blurring in order to enhance the abnormality regions in the 

frame, like polyps, bleeding, tumor, or other lesions. The 

details of each of these experiments are presented in the further 

sections. The significance and the limitations of each of these 

techniques are also discussed in detail. 

Endoscopy is utilized in both diagnosis and therapy in the 

various inner organs of the human body ranging from the 

gastrointestinal tract, lungs, bones, abdominal region, and 

further. The video recorded with the help of the illuminated 

optical device in the procedures aids the physicians both in 

real-time and post-procedure analysis. This video is revisited 

by the physicians to explain to the patients, to train young 

physicians and for detailed analysis. The duration of the 

endoscopy directly depends on the duration of the procedure 

which in turn depends on the specific endoscopy process. The 

recorded video data can be enormous. Pointing out the relevant 

areas in this video data is an important task to save the 

physicians precious focus time. A crucial task in this process 

is to be able to classify the endoscopy frames as normal or 

abnormal. 

As compared to the classification process on regular images, 

the classification of endoscopy video frames presents several 

challenges because of the poor quality of the frames, the 

various artifacts that can be present as a part of the content of 

the frame like reflection, blood, smoke, motion blur or 

occlusions between tools used in therapy. In addition to these, 

the endoscopy frames have a black border which can have 

some textual information present. The textual content and the 

black border are irrelevant portions of the frame and training a 

neural network model based on these images requires a 

vigilant pre-processing technique that would aid the model 

training process to pick up relevant features of the frame and 

ignore all other points. With this aim, an algorithm for 

masking and cropping the irrelevant portion of the endoscopy 

frame has also been proposed in this work. 

Among the three pipelines experimented, the architecture 

pipeline based on EfficientNet has shown the highest 

performance compared to the current state-of-the-art 

approaches. A sensitivity, specificity, and accuracy of 0.94, 

0.91, and 0.93 respectively have been achieved with the 

proposed novel approach to categorize the abnormal frames. 

The insights from the results based on the experiments 

conducted as a part of this work are multi-fold, (a) the 

requirement of customized, efficient, and effective pre-

processing techniques and algorithms that can be applied to 

the images before feeding them to the network for training 

purposes (b) the need for designing a customized architecture 

and a pipeline to provide a solution for the task of 

classification (c) detailed analysis of results obtained from the 

three pipelines. The next section discusses the related work 

and gives a list of the publicly available dataset for endoscopy 

video analysis. The implementation details of the masking and 

cropping algorithm and the three solution pipelines for 

abnormality classification in the endoscopy frame are 

explained in section 3. The results obtained and the analysis is 

presented in section 4. 

2. RELATED WORK

The presence of abnormalities in the endoscopy video frame 

is a piece of semantic information that aids in the selection of 

meaningful and relevant frames from the video. This section 

presents the study of existing works in the literature that have 

focused on the detection of abnormalities from endoscopy 

videos or the extraction of any other context-related 

information that can serve as a piece of semantically 

meaningful information to perform the classification of the 

frame. 

The existing solutions reviewed can be categorized into (i) 

solutions focused on using hand-crafted feature extraction and 

classification [4-12] and (ii) solutions based on deep neural 

network features [13-24]. 

2.1 Based on hand-crafted features 

Chen and Lee [4] have reviewed the current development of 

machine-vision-based analysis of endoscopy video, focusing 

on the research that identifies specific gastrointestinal (GI) 

pathology and methods of shot boundary detection based on 

traditional image processing techniques. Alexandre et al. [5] 

have examined the handcrafted color and position features 

versus texture features for polyp detection in endoscopic 

frames using the Support Vector Machine (SVM) classifier. 

Ghosh et al. [6] have proposed a block-based histogram 

feature extraction method based on traditional hand-crafted 

features for bleeding detection in Wireless Capsule Endoscopy 

(WCE) videos. To obtain local statistical features, the 

maximum pixel value of each spatial block was computed, and 

the global feature of an image was obtained considering the 

histogram bin frequency of block maxima. Sekuboyina et al. 

[7] transformed the color space of an image and classified a

pixel in the frame as one belonging to an abnormality (malign

pixel) or not (benign pixel) using the traditional image

processing-based feature extraction technique.

Ghosh et al. [8] considered a block surrounding individual 

pixels for extracting local statistical features. By combining 

local block features of three different color planes of RGB 

color space, an index value was defined. A color histogram, 

extracted from those index values, provided a distinguishable 

color texture feature. A feature reduction technique utilizing 

color histogram patterns and principal component analysis 

was proposed for bleeding detection in WCE videos. 

Alexandre et al. [9] proposed a polyp detection technique 

based on the color and position information in the frames.   

Bipin Dev [10] implemented a canny edge detector to detect 

the edge regions in the L channel of the image for identifying 

bleeding in WCE videos. Savazzi and Guarnaschelli [11] used 

an image patch-based feature extraction and classification. 

This method extracted features based on Local Binary Pattern 

(LBP), Gray Level Cooccurrence Matrix (GLCM), and CNN. 

Vasilakakis et al. [12] provided a study on the commercially 

available WCE platforms, as well as the advances made in 

optimizing the diagnostic capabilities of WCE. The study 

provides an overview of the traditional image processing 

techniques applied to aid in the diagnosis of WCE video 

frames. 

2.2 Based on deep neural networks 

Byrne et al. [13] have proposed a CNN classifier model 

based on exclusive off-the-shelf features for polyp 

differentiation on endoscopy frames. Yuan and Meng [14] 

proposed a deep feature learning method to recognize polyps 

in the WCE images. The proposed method used an image 

manifold constraint, which was constructed by the nearest 

neighbor graph that represented the intrinsic structures of 

images. The image manifold constraint enforced that images 
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within the same category share similar learned features and 

images in different categories should be kept far away. Thus, 

the learned features preserve large inter-variances and small 

intra-variances among images. 

Bernal et al. [15] provided a comparative analysis of polyp 

detection methods in colonoscopy videos performed under 

various challenges like overlay information, specular 

highlights, and overexposed regions. Bouget et al. [16] 

provided an analysis of validation techniques employed to 

obtain detection performance results and establish 

comparisons between surgical tool detectors in endoscopy 

therapeutic videos. Law et al. [17] developed an instrument 

tracker based on the Hourglass neural networks and assessed 

the movement of the robotic instruments, and classified the 

technical level of surgeons with a linear classifier, using peer 

evaluations of skill as the reference standard. 

Coelho et al. [18] proposed an evaluation of deep learning 

U-Net architecture, to detect and segment red lesions in the

small bowel. Gong et al. [19] proposed a machine translation

framework for automatic pathology annotation on medical

images. Iakovidis et al. [20] proposed a solution based on three

phases to locate gastrointestinal (GI) abnormalities. First, the

method classified the video frames into abnormal or normal

using Weakly Supervised Convolutional Neural Network

architecture. Then salient points from deeper WCNN layers

were detected, using a Deep Saliency Detection algorithm; and

GI anomalies using an Iterative Cluster Unification algorithm.

Park and Lee [21] proposed a class-labeling method that can 

be used to design a learning model by constructing a 

knowledge base focused on main lesions defined in standard 

terminologies for capsule endoscopy. Cao et al. [22] obtained 

feature maps of the same resolution by performing a max 

pooling operation on different convolutional layers, and then 

quantifying the pooled feature maps for WCE frame 

classification. Yang et al. [23] merged multi-level features by 

explicitly modeling interdependencies between all feature 

maps of different convolution layers for lesion classification 

in WCE frames. Vasilakakis et al. [24] proposed an 

unsupervised color-based saliency detection scheme that 

combined both point and region-level saliency information 

and the estimation of local and global image color descriptors. 

 The literature survey conducted gave insight into the 

existing solutions for abnormality classification and detection 

in the endoscopy frames. Many of these solutions focus on 

detecting and localizing abnormalities like bleeding, lesions, 

and polyps. These solutions either exclusively extracted hand-

crafted features followed by classification or used deep 

learning-based classification and segmentation. This work 

aimed at developing an ensemble solution based on hand-

crafted feature extraction in the pre-processing stage followed 

by extracting the off-the-shelf deep features. This work 

presents the results of the experiments with the three ensemble 

pipelines and discusses their pros and cons. The resulting 

model based on the novel, innovative pipeline consisting of (i) 

border mask removal, (ii) feature enhancement for 

highlighting regions of abnormality in endoscopy frames, and 

(iii) training of curated data on customized EfficientNetB0

architecture, has been successful in classifying the endoscopy

frames with an accuracy of 93%.

The implementation of any deep learning-based solution 

would require the presence of a large amount of data. In this 

work, an enormous labeled endoscopy frame data was required. 

The research work on the endoscopy video data starting from 

the classification of the frames to the segmentation of 

abnormality regions and further is feasible because of the 

widely available dataset that can be downloaded for research 

purposes. Some of these publicly available datasets for 

endoscopy video data analysis are listed below in Table 1. 

Table 1. List of publicly available labelled datasets for 

endoscopy video frame 

Sl. 

No. 
Dataset Details 

1 

WCE colon disease 

curated disease 

dataset 

KVASIR Dataset images curated. 6000 

images belonging to normal, ulcerative 

colitis, polyps, and esophagitis [25] 

2 KVASIR 

Images, annotated and verified by 

endoscopists, including 8 classes 

showing anatomical landmarks, 

pathological findings, or endoscopic 

procedures in the GI tract, i.e., 

hundreds of images for each class [26] 

3 
m2cai16-workflow 

Dataset 

41 labelled cholecystectomy videos 

[27] 

4 
m2cai16-tool 

Dataset 

15 labelled cholecystectomy videos 

[28] 

5 Surgical160 

160 short video clips showing typical 

surgical actions in gynaecologic 

laparoscopy. The dataset consists of 16 

distinct classes [29] 

6 CholecSeg8k 
Labelled data for semantic 

segmentation [30] 

7 HYPERKVASIR 

Multi-class image and video dataset 

for gastrointestinal endoscopy, 

110,079 images and 374 videos from 

various GI examinations [31] 

8 KVASIR SEG 

1000 polyp images and their 

corresponding ground truth from the 

Kvasir Dataset v2 [32] 

9 Cholec80 Dataset 
80 labelled videos of cholecystectomy 

procedures [33] 

10 EAD Dataset 

Localization of bounding boxes and 

class labels for 8 artefact classes for 

given frames [34] 

11 Kvasir-capsule 
PillCAM dataset containing 47,238 

labelled images and 117 videos [35] 

3. IMPLEMENTATION

The implementation process for the classification of the 

endoscopy frames as normal or abnormal proceeded in several 

phases starting with collecting labeled images from various 

publicly available resources. The curated dataset comprised 

endoscopy frames grouped into two categories namely normal 

and abnormal. The abnormal images consisted of all the 

frames that depicted an abnormality ranging from bleeding, 

lesions, polyps, ulcer, esophagitis, and tumors. A total of 2000 

images from both classes were initially considered. These 

images were augmented with a rotation range of 40, a shear 

range of 0.2, and a zoom range of 0.2 keeping the brightness 

range between 0.5 to 1.5 and the horizontal flipping to true. 

The image augmentation was performed to increase the 

generalizability of the trained model and to increase the 

sample set. The augmented images were further analyzed and 

any poor-quality frames with blur and high interpolation were 

discarded and a total of 8000 images in both classes were 

considered. 300 frames from the unaugmented set were 

reserved for testing the generated models. 

The endoscopy curated dataset now consisted of images 

from several sources with varying content and resolution. A 
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sample set of images from both classes are shown in Figure 

1(a) and Figure 1(b). 

(a) 

(b) 

Figure 1. Sample frames from abnormal category 

It can be observed from the frames in both normal and 

abnormal categories that the endoscopy frames might have 

oval or polygonal center information with a black border. In 

some of the endoscopy frames the black border might as well 

contain textual information pertaining to the procedure being 

performed. The black border is an irrelevant portion of the 

image. During training the model might try to look for features 

in this irrelevant zone. Hence it becomes important to design 

an algorithm to crop the irrelevant portion of the image. The 

masking and cropping algorithm designed for this purpose is 

explained in the next section. 

3.1 Experimental setup 

The deep-learning-based ensemble architectures was 

instantiated and the model generated in all the experimental 

pipelines was trained on an Azure NC-series NC6s_v3 Virtual 

Machine (VM) with an A100 Graphics processing unit (GPU). 

The training was performed with a batch size of 32. Adam and 

Stochastic gradient descent (SGD) optimization algorithms 

were considered for model training experiments. The adaptive 

learning rates were started with 0.01. Early stopping was 

incorporated in order to prevent overfitting and save 

computational resources. The patience level was set to 10 and 

the validation loss and accuracy were monitored during 

training. 

3.2 Masking and cropping algorithm 

Table 2. Phases in masking and cropping algorithm 

Step 1: Load the original frame and the mask frame 

Step 2: Set the tolerance value to 7, and convert the original 

frame to greyscale 

Step 3: Apply a threshold and check the pixel values in the 

frame to the tolerance value set 

Step 4: Consider the pixels that are greater than the tolerance 

value as they are not too dark as in the case with border pixel 

Step 5: Pick the indices of the pixel that are not too dark based 

on the threshold on the coloured frame in all three channels 

Step 6: Construct the cropped image by stacking indices picked 

in all three channels 

The masking and cropping algorithm were designed to crop 

the black border region of the endoscopy frame so that the 

cropped frame would only have the targeted portion of the 

abnormality to a large extent. A mask frame was constructed 

to aid the cropping process. The algorithm steps are explained 

in Table 2. A few of the sample sequences of endoscopy 

frames after performing the masking and cropping are 

depicted in Figure 2. 

Figure 2. Sample frame in masking and cropping sequence 

3.3 Architecture pipelines 

Three pipeline architectures with an ensemble of hand-

crafted features based on computer vision techniques and off-

the-shelf features from deep learning techniques are 

experimented with. The input to these architectures was the 

cropped frames. The pre-processing algorithms used and the 

customized deep architectures in the three pipelines are 

explained further below. 

3.3.1 Architectural pipeline-1 

The first approach was based on the sequential 

convolutional neural network. The sequence of phases in the 

first solution pipeline is depicted in Figure 3. 

The architecture of the CNN consisted of a sequence of 

convolution and max pooling layers followed by flattened and 

dense layers. The curated and augmented dataset comprising 

8k frames were initially used in the training based on this 

architecture both with and without applying the masking and 

cropping algorithm. The frames were resized to 254*254. The 

architecture had a total of 831,713 parameters and the 

summary of this sequential structure is shown in Figure 4. 

The model when trained on the data after resizing, initially 

achieved a training accuracy of 85% but the validation 

accuracy was just 34%. In order to improve the validation 

accuracy, the trials of performing the first pre-processing 

technique namely channel mixing were conducted. The 

channel mixing helped in enhancing the details of the frame 

like bleeding, mucosa, fluids, etc. The enhanced frame helped 

the model to pick up better features. The details are mentioned 

in Table 3. The model was trained on several epochs ranging 

from 150 to 300 and the improvements in the model training 

accuracy with different weighted channel is shown in Figure 

5. 

Figure 3. Architectural pipeline 1 based on CNN sequential 

structure 

The sensitivity, specificity, and accuracy were computed on 

the test set and the values ranged between 75% to 80% for 

different trials of the pre-processing. It can be observed from 

Table 3. that the pre-processing technique that included a 

channel mixing of red at 80% and green at 20% achieved the 

highest training accuracy of 94%. However, the model’s 

performance on the test set was not very reliable as the 

specificity was close to 75%. In order to achieve better 

performance on the test set, a model based on Inception Resnet 

V2 was considered for experimentation next. This is explained 

in the next section. 
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Figure 4. Sequential model summary 

Figure 5. Sequential model training sequence 

Table 3. Trails on model generation using sequential 

architecture 

Sl. 

No. 

Pre-processing 

Applied 
Results 

1 
Weighted Channel: 

Red 0.1, Green 0.9 

Training Accuracy–90%, Validation 

loss–0.63, Validation accuracy–87% 

2 
Weighted Channel: 

Red 0.5, Green 0.5 

Training Accuracy–91%, Validation 

loss–0.152, Validation accuracy–

90% 

3 
Weighted Channel: 

Red 0.8, Green 0.2 

Training Accuracy–94%, Validation 

loss–0.0283, Validation accuracy–

88.75% 

3.3.2 Architectural pipeline 2 

The Inception-ResNet v2 architecture is a deep neural 

network that combines the benefits of two popular 

architectures, Inception and ResNet. Inception-ResNet v2 has 

achieved state-of-the-art results on various benchmark 

datasets such as ImageNet. The architecture is designed to 

reduce computation costs while maintaining high accuracy by 

using techniques such as factorization and aggressive 

regularization. Also, the architecture is designed to be robust 

to variations in input data such as occlusions, translations, and 

rotations. The architecture was appended with additional 

layers namely convolution, flatten, dropout, and dense. The 

transfer learning strategy was applied for model training. 

The dropout layer was added as it is a powerful 

regularization technique that can help to improve the 

generalization, robustness, and computational efficiency of 

deep learning neural networks. The input data frames were 

resized to 299*299 in the color channel and the model had a 

total of 58,728,813 parameters. The model summary and the 

architecture details are given in Figure 6. 

The model was genrated considering the resized images 

from the colour channels and the weighted channels. As with 

the sequential model, the training accuracy that included data 

with a channel mixing of red with 80% and green with 20% 

achieved the highest training accuracy of 95%. However again 

the model’s performance on the test set was not very reliable 

as the sensitivity was close to 79%. The sensitivity, specificity 

and accuracy computed on the test set resulted in values 

ranging 0.79, 0.82 and 0.84 respectively. In order to achieve 

better test performance, a model based on EfficientNet B0 

with a custom tailored pre-processing technique was 

considered. This is explained in the next section. 

Figure 6. Model summary and architectural details for 

inception resnet v2 pipeline 

3.3.3 Architectural pipeline-3 

In the next sequence of trials to generate an efficient 

solution for the classification of abnormality in endoscopy 

frames, the EfficientNet B0 architecture was considered. 

EfficientNet B0 being a deep convolutional neural network 

architecture has been developed with the goal of achieving 

better accuracy and efficiency compared to previous models. 

It has several advantages including better accuracy on several 

benchmark datasets, such as ImageNet, with fewer parameters 

than other models. It can achieve high accuracy with fewer 

parameters, which translates to faster training times and lower 

memory requirements. Further, EfficientNet B0 has been 

shown to be highly effective at transfer learning, meaning it 

can be used as a base model with only minor modifications 

increasing the generalizability of the model. 

The frames in the training set were initially masked and 

cropped to remove the irrelevant border and were resized to 

224*224 in the color channel and the trained model did not 

show any significant improvement in the test accuracy. A 

customized pre-processing algorithm was defined to enhance 

the frames for aiding the model to pick better distinguishing 

features. The phases in this pipeline are depicted in Figure 7. 

The model summary and architectural details are 

represented in Figure 8. Loss and accuracy plots captured 

during model training are depicted in Figure 9.
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Figure 7. Architectural pipeline 3 based on efficientnet b0 

structure 

Figure 8. Model summary and architectural details for 

EfficientNet B0 pipeline 

Figure 9. Loss and accuracy plots during model training 

Table 4. Phases in pre-processing algorithm 

Step 1: Apply Gaussian Blur on the greyscale version of the 

image with a kernel size of 3*3 

Step 2: Find the contours in the given frame and determine the 

largest contours 

Step 3: Crop and scale the image based on the centre and 

radius calculation  

Step 4: Add padding to the image and get the border shape  

Step 5: Define the border using border constant 

Step 6: Process the constructed image using addWeighted 

function with a kernel size of 12*12 in the blur function 

A customized pre-processing algorithm was designed and 

implemented for the frame pre-processing for model 

generation and testing. The pre-processing algorithm involves 

a six-step process, which is depicted in Table 4. This pre-

processing technique enhances the features of the frame 

highlighting the regions of bleeding, polyps, or any other 

abnormality in the endoscopy frame. This enhancement helps 

the model to learn more relevant features and thus improves 

the accuracy. The sensitivity, specificity, and accuracy of the 

trained model on the test set after implementing this pre-

processing algorithm rose to 0.94, 0.91 and 0.93 respectively. 

The frame representation after pre-processing is represented in 

Figure 10. 

Figure 10. Sample pre-processed frames 

3.3.4 Discussion on the pipelines 

The masking and cropping procedure for clipping the 

irrelevant black border of the endoscopy frame was the 

preceding step for all the experimented pipelines. The first 

pipeline was based on the channel mixing pre-processing 

technique combined with the sequential CNN architecture. 

The weighted combination of the channels helped the model 

pick up relevant features. However, the trained model’s 

performance on the test set was not reliable.  

The second pipleine was based on the InceptionResNet V2 

archtitecture. The weighted channel pre-processing technique 

was experimented with this architecture, and the model test 

results were not reliable. This seeded the process of a 

customized and innovative pre-processing technique to 

enhance the regions of abnormalities like lesions, tumors, and 

ulcers in the frames. This preprocessing technique used in the 

third pipeline based on EfficientNetB0 architecture helped in 

generating a model that performed better than the previous 

models. This ensemble technique with a customized pipeline 

has achieved an accuracy of 93% which is higher than the 

existing solutions as studied extensively in the literature. 

4. RESULTS AND DISCUSSION

In this work, three ensemble architectures based on 

computer vision and deep-learning-based approaches are 

designed and implemented. These architectures were used to 

generate trained models for abnormality classification in 

endoscopy video frames. A masking and cropping algorithm 

has been proposed in this work to remove the irrelevant black 

border of the endoscopy frame. Initial experiments were 

conducted to include the border cropped and resized frame in 

the color mode as the starting point of model training. Further, 

to enhance the frame content details, trials of channel mixing 

were conducted. Upon observing the trained model behavior 

on the test set, a decision to design a customized pre-

processing technique was taken. The customized pre-

processing technique enhanced the presence of polyps, tumors, 

and lesions in the abnormal frames. These features 

highlighting the areas of abnormality helped in generating an 

efficient model. 

The architectural pipeline based on the EfficientNet B0 

architecture achieved the best performance and the sensitivity, 

specificity, and accuracy of the model generated on the test set 

were 0.94, 0.91, and 0.93 respectively. The results establish 

the requirement for a customized and efficient computer 
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vision-based pre-processing technique that would enable the 

model to focus on the features from the relevant regions of the 

frame. Such enhancement techniques applied in the 

preprocessing stage would greatly contribute to the efficiency 

of the model generated from the deep architecture. Further, 

this work proposes a novel and customized, and optimized 

architecture pipeline for the efficient classification of 

abnormality in endoscopy frame. 

A Grad-CAM (Gradient-weighted Class Activation 

Mapping) [36] based heatmap was generated on the test set to 

visualize the distinguishing areas in the frames for the model 

for abnormality classification. Grad-CAM is a technique for 

generating a heatmap that highlights the regions of an input 

image that are most important for a neural network's prediction. 

The Grad-CAM heatmap is generated by computing the 

gradient of the output class score with respect to the feature 

maps of the last convolutional layer of the network. This 

gradient is then used to weigh the feature maps, and the 

weighted feature maps are averaged to produce the final 

heatmap. The steps involved in generating a Grad-CAM 

heatmap are given in Table 5. 

Table 5. Phases in Grad-CAM heatmap generation 

Step 1: The neural network is trained to classify images into 

normal and abnormal classes. 

Step 2: During inference, an input image is fed into the network, 

and the output class score is computed. 

Step 3: The last convolutional layer of the network namely 

conv2d_17 is identified, and the gradient of the output class score 

with respect to the feature maps of this layer is computed. 

Step 4: The gradient is then used to weigh the feature maps of 

the last convolutional layer, and the weighted feature maps are 

averaged to produce the final heatmap. 

Step 5: The heatmap is then overlaid on top of the original input 

image, with the heatmap regions corresponding to the areas of 

the image that were most important for the network's prediction. 

The Grad-CAM heatmap provides a useful visual 

explanation of how a neural network arrived at its prediction. 

The heatmap generated is represented in Figure 11. 

Figure 11. Sample Grad-CAM heatmap on test frames 

The statistical parameters considered for evaluating the 

model performance on the test set in this study are sensitivity, 

specificity and accuracy. Sensitivity refers to the proportion of 

true positive cases that are correctly identified by a model or a 

test. Sensitivity is also called the true positive rate or recall. A 

high sensitivity indicates that the model is good at identifying 

abnormality frames, while a low sensitivity indicates that the 

model is missing abnormality frames. The sensitivity is 

defined as the number of true positive cases divided by the 

total number of positive cases. Sensitivity is represented as 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(1) 

where, True Positive is the number of abnormality frames that 

are correctly identified and False Negative is the number of 

abnormality frames that are incorrectly identified as negative. 

Specificity refers to the proportion of normal frames that are 

correctly identified by the model. A high specificity indicates 

that the model is good at identifying normal frames, while a 

low specificity indicates that the model is incorrectly 

classifying normal frames as abnormal. Specificity is also 

called the true negative rate. The specificity is defined as the 

number of true negative cases divided by the total number of 

negative cases. Specificity is represented as 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(2) 

where, True Negative is the number of normal frames that are 

correctly identified and False Positive is the number of normal 

frames that are incorrectly identified as abnormal frames. 

Accuracy is a metric that measures the overall correctness 

of a model or a test. It is defined as the proportion of correctly 

classified cases to the total number of cases. Accuracy is 

represented as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(3) 

where, True Positive is the number of abnormal frames that 

are correctly identified, False Positive is the number of normal 

frames that are incorrectly identified as abnormal frames, True 

Negative is the number of abnormal frames that are correctly 

identified, and False Negative is the number of abnormal 

frames that are incorrectly identified as normal frames. 

Accuracy is a metric for evaluating the performance of 

binary classification models. It measures the proportion of 

correct predictions made by the model on the test set. 

Accuracy is defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
(4) 

The prediction values of a few of the test frames under both 

categories are depicted in Figure 12. 

Figure 12. Prediction values on a few test-frames 
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5. CONCLUSION

Abnormality classification in the endoscopy frame is one of 

the first steps in assisting physicians in the diagnosis and 

analysis of the video content. It would save an enormous 

amount of the physician’s precious time if the irrelevant 

contents are filtered out. This work focused on abnormality 

classification in endoscopy frames. For this, the trials of model 

generation based on three possible ensemble architecture 

pipelines have been conducted. The ensemble architectures are 

based on the combination of computer vision techniques and 

deep learning techniques. As compared to the existing 

solutions, this work proposes a unique pre-processing 

technique that aids to enhance the regions of abnormality in 

the endoscopy frame. This pre-processing technique helped in 

representing frames with more discriminative features, 

enabling the model to make better-informed classification 

decisions. 

The analysis of the outcomes of this study has resulted in 

the understanding that an efficient and customized pre-

processing technique is necessary for generating an efficient 

model. The model generated based on the EfficientNet B0 

architecture has achieved significant performance with 

sensitivity, specificity, and accuracy of 0.94, 0.91, and 0.93 

respectively. This work has resulted in a conclusion that it is 

possible to achieve significantly improved results and 

outperform existing solutions by combining efficient pre-

processing with deep learning pipelines. This work focused on 

classification of gastro-intestinal endoscopy videos. However, 

this solution can also be extended for endoscopic procedures 

like colonoscopy, arthroscopy, bronchoscopy, laparoscopy, 

and further. 

6. FUTURE ENHANCEMENT

The normal and abnormal classification in the context of 

endoscopy videos would help in filtering out the extraneous 

frames and reduce the number of frames requiring the 

physician’s attention to a great extent. In addition to 

classifying the frames as normal or abnormal, the regions of 

abnormality can be segmented to depict the areas of concern. 

Further, to generalize the model for unseen instances diverse 

and representative dataset that covers a wide range of 

examples and variations must be curated. Approaches for 

detecting, locating, and tracking abnormalities can be 

considered. The hybrid approach proposed in this work 

targetted at classification can also be extended for 

segmentation of regions of interest in endoscopy videos. 
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