
Natya Shastra: Deep Learning for Automatic Classification of Hand Mudra in Indian

Classical Dance Videos

Pallavi Malavath* , Nagaraju Devarakonda

School of Computer Science & Engineering (Scope), VIT-AP, Amaravati 522237, India

Corresponding Author Email: pallavimalavath.phd@gmail.com

https://doi.org/10.18280/ria.370317 ABSTRACT

Received: 26 April 2023

Accepted: 31 May 2023

The human body's temporal fluctuation is referred to as human activity. The preservation

of cultural heritage, the development of video recommendation systems, the support of

learners via tutoring systems will benefit from the capture and evaluation of dance-related

multimedia content. Because of its detailed hand gesture, Indian classical dance (ICD)

classification is still an enthralling field of study. This provides a framework for analyzing

various computer vision and deep learning ideas. Automated teaching solutions across all

disciplines, from traditional to online forums, become unavoidable through changes in

learning habits. ICD also becomes a crucial component of a thriving culture and heritage

that must be updated and preserved at all costs. The dance involves complex positions like

self-hands-occlusion and full-body rotation. The main objective of this study is, in the

Bharatanatyam dancing style we proposed a framework for categorizing hasta mudras. Our

Convolution Neural Network - Long Short Term Memory (CNN-LSTM) deep knowledge

architecture for Indian Classical Dancing (ICD) categorization now includes a new hand

posture signature. By guessing where people's hands would be, we rated dance

performances. This architecture assesses hand poses using information and information

pruning, while a dance instructor application assesses the time and accuracy of student

dances. 252 YouTube videos of the Bharatanatyam dance form has been used to make up

the dataset used in our research.This study offers a methodology with three-phase deep

learning techniques. Then, using the pre-trained paradigm TensorFlow EfficientNet –UNet,

which aids us in determining any hand position within the frame, we extracted the

appropriate joint locations of the hands from each video frame. Then, cosine similarity was

used to identify or correlate the indicated action factors. Finally, using key details from the

hand pose, we categorized it and trained the Convolution Neural Network - Long Short

Term Memory (CNN-LSTM) network structure using the classification system's training

dataset. Regarding factors like accuracy, F1-score, AUC curve, recall and precision, the

proposed CNN-LSTM structure for classifying hand mudras is compared with

Convolutional LSTM Long Term Recurrent Convolutional Network(LRCN), Multilayer

Perceptron (MLP), LSTM and 3D Convolutional Layer (CONV3D). As a result, it was

found that throughout the examination process, the proposed CNN-LSTM classification

structure achieved 98.53% accuracy, 99.04% precision, 98.49% recall, 99.12% AUC score,

and 98.74% F1-score. This achieves 94.03% accuracy, 93.13% precision, 94.76% recall,

96.06% AUC score, and 93.53% F1-score during the training method.

Keywords:

deep learning, hand pose estimation, Indian

classical dance, video classification,

convolutional LSTM, multilayer perceptron,

accuracy, recall

1. INTRODUCTION

Indian classical dance has been practiced and performed all

over the world for more than 5000 years. But only the expert

can fully comprehend the explication of the dancing

movements and hand gestures, in addition of sophisticated

steps accompanied by music and poetry recitation. According

to "Natya Shastra – Indian Classical Dance Form”, these

traditional dance styles are known as "Natya Rasa." There are

108 karanas (gestures), which refer to actions of the hands, feet,

and body, according to Natya Shastra [1]. These hand gestures

represent a variety of bodily associations with god, nature, and

behaviours. In Figure 1, a few hasta mudras [2] are displayed.

The postures of the well-known classical dance style

Bharatnatyam have been maintained in the Chidambaram

temple located in Tamil Nadu, which is where temples from

ancient and mediaeval India show sculptures with detailed

details of beautiful dance postures. The Natya Shastra is the

most well-known and thorough treatise on dance, theatre, and

music performance. It contains precise instructions detailing

the language and principles related to classical dance, music,

and almost every facet of drama, and is usually thought to be

2000 years old.

The fundamental principles described in Natya Shastra have

been interpreted differently over time by numerous artists

from various art and dance schools. However, the original

Natya Shastra, which is preserved at the Chidambaram temple

[1] and was built about the 12th century A.D., has a set of 108

dancing positions known as Karanas (gestures). Even now,

Bharatnatyam dancers still portray these stances, as seen in

Figure 1.

Figure 2(a) depicts a dancer striking the Nataraj posture,

while Figure 2(b) depicts the matching sculpture (b). Vartita

Karana from the Bharatnatyam dance style is shown being

Revue d'Intelligence Artificielle
Vol. 37, No. 3, June, 2023, pp. 689-701

Journal homepage: http://iieta.org/journals/ria

689

https://orcid.org/0000-0003-4180-6062
https://orcid.org/0000-0003-4864-8482
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370316&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370317&domain=pdf

performed by a performer in Figure 2(c). The same Karana

from Figure 2 is depicted in a sculpture on the walls of a 25th-

century temple (c). The litany of a poem or song performed by

music goes together with the dancer's use of body positions

and different hand gestures to express semantic meaning.

Figure 1. Asamyuktha Hasta Mudras (Single Hand Gestures)

and Samyuktha Hasta Mudras (Double Hand Gestures)

(a) (b) (c) (d)

Figure 2. (a) The posture of Nataraj [1]; (b) A sculpture

delineating Nataraj pose; (c) The vartita Karana [1]; (d) A

sculpture portraying the same Karana

In addition to observing hand position, it is important to

read hasta mudras to understand the denotation of the different

dance forms. The Natya Shastra mentions 28 Asamyukta

(Single hand gestures) Hasta Mudras : Tripathaka,

Kartarimukha, Pataaka, Ardhapataka, Mayuram, Araalam,

Ardhachandram, Mushti, Shukatunda, Kapitta, Shikara, Suchi,

Padmakosha, Chadrakala, Sarpashika, Mrigashirsha, Kangula,

Simhamukha, Chatura, Alapadma, Bhramara, Hansapakshika,

Hamsasye, Mukula, Sandamsha, Trishula, Tamrachuda.

Moreover, four new hasta mudras(Hand Gestures—Kataka,

Vyagraha, Ardhasuchi, and Palli—were added to this

collection over time. Samyuktha Hasta mudras (Double Hand

Gestures) in contrast to these one-handed gestures, call for the

employment of 60 both hands to communicate a message or

specific sense. There are 24 (Samyuktha Hasta Mudras)

double hand gestures recorded in the Natya Shastra: Karkata,

Kapota, Anjali, Swastika, Utsanga, Piushpaputa, Shivalinga,

Kartariswastika, Kataka-vardhana, Shakata, Pasha,

Shankha,Chakra, Kilaka, Samputa, Kiurma, Matsya, Varaha,

Nagabandha, Garuda, Khatava, Avhitta, Bhairunda. The

dancer employs both single and 65 double hand movements to

illustrate the significance of the poem or song that is being

performed. Bailey and co-authors' study [4] looks at how

studies on dance is impacted by recently established e-Science

technologies. The study focuses on the outcomes of the e-

Dance project, a two-year interdisciplinary research initiative

that explores the integration of choreography, advanced video

conferencing, and human-computer interaction analysis

through the use of hypermedia and non-linear annotations for

recording and documentation [3, 4]. Deep learning has

recently become a potent paradigm for challenging (machine

learning) ML tasks including handwritten character

recognition object/image recognition, etc. We are directed to

adopt (deep learning) DL algorithms because they are

excellent at extracting the relevant details from images for

categorization.

The earlier methods fit the deep figure using a flexible hand

model, which is computationally difficult but allows the

intermediate frame to be used as the initial value for the

subsequent frame. However, multiple frames should be taken

into account at once because the inaccuracy will increase over

time. Due to the variety of appearances generated by posture

changes and movements, including occlusion, illumination,

and other factors, estimating hand position directions is

particularly challenging in reality. To deal with these problems,

multiple approaches have been developed over time. The hand

gestures continue to differ from our typical daily tasks. For

computer vision researchers, automatic pose estimation. It can

be challenging to identify spatial patterns of specific hand

postures in movies. The advent of diverse algorithms that may

explore through video clips for certain human emotions of

yearning was spurred by an increase in internet streaming

video over the previous ten years. The difficulty still resides in

extracting a hand posture, recognizing it, and annotating it

with a trained CNN feature map. The study's objective is to

eliminates hand posture feature maps from both online and

offline sources that are seen in traditional Indian dance.

Constraints include things like video quality, frame rate,

background lighting, scene change speed, and blurring. Since

many users upload videos of poor quality, which highlight all

of the restrictions as a barrier to the computerization of video

categorization and segmentation, the evaluation of online

content continues to be a complex procedure. Hence, it is

difficult to easily extract human hand dance characteristics

from the dance video chain online due to a number of

constraints. Automatic dance movement extraction still

requires complex poses and actions to be done at various

speeds while coordinating music and vocal sounds, making it

difficult to comprehend. The hand mudra prediction paradigm

uses an approach developed by dance professionals, which

starts with the dancer's hand pose sequence, combines joint

replacement sub-sequences with dance motions, and then

predicts the hand gesture from the sequences of joint

"movements". The following list of factors illustrates the

significance of CNN-LSTM: As the size of the picture datasets

grows, this demands a deeper and larger CNN-LSTM. Also,

there hasn't been much research done on deep CNN-LSTM

classification of hand mudras. It is appropriate for providing

answers to difficult situations involving a large amount of data.

The key contribution of the proposed method is follows:

·The first step was to collect several classical dancing

videos from YouTube, after which the proper pre-processing

procedures, such resizing and scaling were used.

·To evaluate the hand gesture using cosine similarity to

compare it to student and dancer poses, the Tensorflow

EfficientNet-Unet Architecture was developed.

· In the feature extraction segment, EfficientNet-UNet

salient features are simultaneously extracted.

·Finally, CNN-LSTM is utilized to estimate the hand

gestures.

·Use any real-time dancing video to detect the position

and classify the hand mudras using the suggested approach.

·Comparing the outcomes of the proposed technique with

results obtained using the most recent technology.

The other sections of the study are organized as follows:

690

Segment 2 examines some current research investigations,

Segment 3 illustrates the proposed technique and

methodologies, Segment 4 displays the results of the

experiment and discussion, and Segment 5 come to an end

with the conclusion and future research.

2. LITERATURE SURVEY

A key zone in the discipline of computer vision during the

last two decades has been the detection of human action from

video. This topic has already been studied by other researchers.

However, a dynamical key point extractor is required for the

detection of human action. For difficult applications of

machine learning (ML), like image/object identification, deep

learning has recently shown to be an effective strategy [5, 6].

The living legacy of Indian classical dance is being preserved

through a multimedia DB retrieval system, according to the

study [7]. They do not, however, discern body stances or hand

gestures to explicationally comprehend the specific dance, in

contrast to our study. A sparse representation based dictionary

learning strategy is suggested in the study [8] for the

classifying ICD. Folk dance classification is attempted in teh

study [9]. A dataset from Greek traditional dance was used to

test the bag of words strategy for activity recognition [10].

Only a few significant papers address the problem of body

posture recognition in ICD, however there is a significant

amount of study on general pose recognition of individuals.

The initial 2D pose estimation methods for images and movies

can be found in the study [11, 12]. Based on the framework for

pictorial structures, Andriluka et al. [13] provide a general

method for human detection and pose estimation. According

to the study [14], visual words should be learned adversarially

for 3D human pose assessment. A approach for detecting and

identifying the hand region was proposed by Pisharady et al.

[15] and uses a Bayesian model of visual attention to produce

a outstanding map. A recent attempt at hand gesture detection

using CNNs can be found in the study [15]. We categorize

seven different grip types using a straightforward five-layer

CNN as suggested in the study [16]. Nevertheless, neither [15]

nor dropout [17] utilize transfer learning. With no prior

knowledge of the hand istance, the method [18]

simultaneously manages initialization, tracking, and recovery

of hand motion. Hariharan et al. [19] suggest a scale,

translation, and rotation-invariant method for identifying

different single hand movements made by a dancer. The issue

of measuring the dancer's position, however, is not addressed

in the study. By using an image dataset of hand mudras from

several traditional dance formats, the authors [20] provide

another initiative grant specifically for recognizing traditional

dances and various hasta mudras. The histogram of oriented

(HOG) attributes are used as the input for the Support Vector

Machine (SVM) classifier. Moreover, transfer learning using

various CNN frameworks is best used to address various

categorization issue statements. Using gathered videos and

photographs, the authors [21] created a bottom-up method for

multi-person posture detection, simultaneously refining part

affinity fields and part detection during the training stage. The

Mobilenet architecture is used to build this model, which

makes run-time analysis easier.

A procedure for calculating 3Dimensional hand poses was

proposed by Malavath et al. [22]. By using this method, the

uncertainty brought on by insufficient depth information in

images is removed. This network offers a 3D hand pose

estimate by identifying critical hand points. Bandaragoda et al.

[23] put out an event-driven computer behavioural model to

comprehend various traffic-related behaviours. The suggested

approach [24] uses travel trajectory analysis and traffic flow

profiling to identify various commuter behavioural profiles as

well as fluctuating and regular patterns. for multi-scene video

processing makes use of the expanding self-organization

map's divisive hierarchical clustering capacity utilizing a two-

step top-down hierarchical technique. A U-shaped fully

convolutional network design was presented by Olaf

Ronneberger et al. [25] in which features maps from various

encoder layers and decoder layers were upsampled and

concatenated. By comparing the best approaches, it was

determined that the little variations in posture for a given

dance style, which are trivially described by hand gestures

(hand mudras), make the competition over hand pose

evaluation in Indian classical dance styles more obvious.

Moreover, the background noise present in the input frames

hinders the process of feature extraction and classification.

The proposed study's focuses on the outcomes of the

collaborative e-Dance project, which investigates the fusion of

choreography, modern video conferencing, and human-

computer interaction study. The fact that paradigm-based

techniques are expensive in terms of computational expenses

is another important problem. The proposed TensorFlow

EfficientNet-Unet based hand position evaluation with (CNN-

LSTM)-based classification is used as a result to surpass this.

3. METHODOLOGY

The recommended (CNN-LSTM) Convolutional Neural

Network-Long-Short Term Memory Network for

classification of hand gesture assessment is shown in detail in

Figure 3. Images of Bharatanatyam dance performed by a

teacher and student are used from YouTube videos for the

given shloka (poem). Initially image should be pre-processed

using the conventional scalar methodology after the input

dataset has first been learned. Pre-processing involves

rescaling the image, first extracting the noise, and then

clearing the image. By constructing the Tensorflow

EfficientNet-UNet framework, this noise-extracted image is

given to the hand mudra pose evaluation mode with a feature

extraction segment. In contrast, key points are extracted using

a similarity index methodology. Finally, using the

classification system's training dataset, we trained the CNN-

LSTM framework. The proposed system's training accuracy

and loss are noted for each epoch. A few evaluation criteria,

including the, accuracy, confusion matrix, recall, precision, f1-

score, AUC curve, and of the suggested system, are used to

determine the execution.

3.1 Dataset explanation

The mudra estimation approach uses a number of

preprocessing procedures, such as data preprocessing, data

augmentation, feature extraction, estimation, and

classification modules, to achieve robustness. The acquired

dataset's raw data is first preprocessed. The exact position of

the bharatanatyam images are cut from the ground truth image

and entered into the pose estimate network. Each input

preprocessed image is then enhanced. The data is increased for

each input image by rotating the original image at various

angles.252 YouTube videos of the Bharatanatyam dance form

691

has been used to make up the dataset used in our research. This

was done to ensure that the dance films would still be visible

and effective with little background activity. There are a total

of 25 video clips with a 400A-U350 maximum resolution and

a 25 s maximum runtime. With the YouTube dance class video

as a reference, we enhanced the content. Our device also

chopped video segments into five to six second chunks of the

casing while dispensing information, yielding a maximum of

150 frames. The ratio of 7:3 was selected as the train to

examine for assessment. The result dataset presented

numerous challenges, including variations in lighting, dancers

shading on the dais, uniform dance positions, etc. This dataset

is made more difficult by the fragmentary hand portions

missing in a few sequences and the less accurate skeletal

cooperative synchronizing. 252 videos altogether were

considered for the experiment.

Figure 3. Flow chart of proposed system

3.2 Information pre-processing using common scalar

techniques

Contemplate that for every input image 1<I<I, an input

image of specific format {wi, yi, Xi} is not-ed in which ‘yi’

denotes the scalar outcome, wi denotes the scalar covariates

vectorization, and Xi de-notes the image predictor calculated

upon a network. The definition of the scalar-on-image

degrada-tion paradigm is:

𝑣𝑖 = 𝑤𝑖𝑇𝛺 + 𝑋𝐼 𝛽 + 𝜇𝑖 (1)

where, Ω denotes the fixed vector, and β denotes a collection

regarding regression coefficients that are delineated using the

same trellis as an image forecaster, Xi.β symbolizes the dot

product of β and Xi. We seek to evaluate the coefficient input

image β taking into account that:

a) Indicator is scarce and divided into spatially continuous

zones.

b) In non-zero regions, the indication remains smooth.

As a result, we also gave a picture of the dormant binary

indicator, which categorizes position of images as neither

predict nor non-predict. By considering l and l in terms of

notation as the image position of the images l and l,

respectively, and l and l as the images l and l having the l th

position extracted. Con-sider l as the locale of all image

positions that share a face with position l but have no corner; l

can comprise up to 4 components on a typical lattice in

dimensions. XTl=[X1, l, ..., XI, l] is obtained by considering

Xl as a length I vector of picture values at position l beyond

subjects. Similarly, think of X(l) as the collection of photos

with the lth place removed. We assume that images have been

deteriorated if the mean of each XTl stays 0. By taking into

account X as the length I vector, we can see that it consists of

the dot product of each image predictor Xi along with: (X) T

=[X1, ..., XI]. Finally, we define ‘w’ as the matrix with

equivalent rows to wiT. With the noise and redundancy

removed, the in-formation is now available for feature

extraction.

3.3 Similarity index methodology for feature extraction

The methodology of similarity index for feature extraction

is a technique employed to evaluate the similarity or

dissimilarity between data points or samples within a dataset.

Its objective is to capture the fundamental characteristics or

features of the data by quantifying the associations among

individual samples. Depending on the characteristics of the

data and the specific problem at hand, several similarity index

measures can be utilized for feature extraction. Cosine

Similarity method has been used in this proposed approach.

Cosine similarity is a metric that measures the cosine of the

angle between two non-zero vectors. It is commonly applied

in the comparison of documents or text data. Unlike magnitude,

cosine similarity primarily focuses on the orientation of the

vectors. Cosine similarity is predominantly employed in

vector comparisons, making it less directly applicable to

images. However, there are strategies to leverage cosine

similarity in image analysis by converting images into vector

representations.

A popular approach involves utilizing image embedding’s

or deep learning models like convolutional neural networks

(CNNs) to extract significant image features. CNNs excel at

capturing hierarchical representations of image content,

producing vector embedding’s that can be compared using

cosine similarity.Here is a general procedure for applying

cosine similarity to images:

(1) Image preprocessing: Begin by resizing the images to a

consistent size and implementing any required preprocessing

steps, such as normalization or cropping.

(2) Extracting image features: Utilize a pre-trained CNN

(EffiecientNet-UNet in this study) model to extract features

from the images. The CNN will convert each image into a

high-dimensional vector representation.

(3) Compute cosine similarity: Calculate the cosine

similarity between the vector representations of the images

using the previously mentioned formula.

By comparing the cosine similarities among various image

vectors, tasks such as image retrieval, image clustering, or

content-based image recommendation can be performed.

Cosine similarity aids in identifying similar image content

based on their vector representations, facilitating effective

image analysis and retrieval.

692

4. TECHNICAL APPROACH

The architecture of encoder and decoder will be briefly

discussed in this part, including EfficientNet, which serves as

the encoder's feature extractor while UNet, serves as the

decoder.

4.1 Encoder-Decoder building design

For semantic segmentation, Figure 4 shows a simple

encoder-decoder network.

Figure 4. Framework of Encoder-Decoder type semantic

segmentation framework based on CNN

In the encoder-decoder module, the initial step involves

using a CNN-based encoder to extract image features. In order

to capture intricate details within the image, the module

gradually decreases the image size while also reducing the

resolution of the feature map. Modern CNN’s like MobileNet,

ResNet, Inception and ResNetV2 etc. are used for this. To

produce the final feature map, these CNN architectures often

gradually decrease the resolution of the image. Generating a

segmentation map for a larger original input image from a

smaller feature map is a difficult task. To overcome this

challenge, the decoder module is designed with several layers

that can up sample the encoder's feature map and retrieve

spatial information.

4.2 Tensorflow EfficientNet-UNet framework

Figure 5. The EfficientNetB7 architecture employs MBConv

as its fundamental building blocks. MBConv, short for

mobile inverted bottleneck convolution, is used to create each

block of the network. The filter size and activation function

used in each MBConvX block are shown, where X can be

either 1 or 6, representing the standard ReLU and ReLU6

activation functions, correspondingly

CNN architectures are developed based on the available

resources and scaled up to enhance their performance when

resources increase. For instance, ResNet18 can be upgraded to

ResNet101 by adding more layers. Traditionally, models were

scaled by increasing the CNN's width, depth, or input image

resolution. However, this practice was arbitrary, involved

time-consuming manual tuning, and occasionally resulted in

suboptimal performance. In their research, Tan et al. [26]

introduced a new approach to scaling neural networks, which

involves uniformly increasing the network depth, width, and

resolution for better performance using a set of fixed scaling

factors. They first designed a baseline architecture called

EfficientNetB0, which was then scaled up using the compound

scaling method to create a family of EfficientNet. This

approach led to the development of eight EfficientNet variants,

ranging from EfficientNetB0 to EfficientNetB7. The

systematic scaling of the network improves its performance by

balancing all the compound coefficients of the architecture

width, depth, and image resolution.

Figure 6. MBConv: Elemental EfficientNet building block

Figure 7. Framework for semantic segmentation using the

suggested Eff-UNet and EfficientNetB7 architecture. Figure

5 displays the specifics of Block1-7. To create the

segmentation map, a series of upconvolution and

concatenation layers make up the decoder

The top model, Efficient- NetB7, performs better on

ImageNet in terms of accuracy than previous state-of-the-art

CNNs [26] and is also 8.4 smaller and 6.1 better and faster.

Figure 5 depicts the network design of EfficientNetB7. The

mobile inverted bottleneck convolution (MBConv) [27] with

squeeze and excitation optimization is the fundamental

component of the EfficientNet design. Figure 6 depicts the

concept of MBConv. The total number of these MBConv

blocks varies depending on EfficientNet network family,

EfficientNetB7 exhibits an in-crease in depth, model size,

width, resolution compared to EfficientNetB0. Moreover,

there is an improvement in accuracy along with these

advancements [26]. According to the size of the filter, striding,

and total number of channels, it can be separated into seven

blocks. In our study, we employed Efficient- NetB5 &

693

EfficientNetB7 as encoders with UNet as the decoder, and

EfficientNetB7 had the best performance.

The UNet is a convolutional neural network that has a

symmetric U shape and was originally designed for bio-

medical image segmentation. It has two pathways - an encoder

and a decoder. The encoder, which is made up of a series of

convolutional, activation, and pooling layers, is responsible

for extracting context from the input image. The decoder or

expansion pathway in the UNet gradually increases the size of

the output obtained from the encoder, which is initially smaller

than the input. This is achieved through the use of transposed

convolutions that enable precise localization. As part of the

expansion pathway, the feature maps from the contracting

pathway are concatenated with high-level features and spatial

information, and these are then fed through a series of up

convolutions. When dealing with intricate scenes that involve

various objects and their respective placements, it is necessary

to combine the intermediate low-level feature maps from

Efficient-Net with the intermediate high-level feature maps

from the UNet decoder. The reason for this is that the encoder's

low-level feature maps contain precise spatial information that

is particularly helpful in these circumstances. The up sampling

component of the network has a large number of feature

channels that allow for the transmission of context information

to higher resolution layers. Unlike the traditional UNet where

the expansion and contraction paths are almost symmetrical,

in this case, the EfficientNet is proposed as an encoder for the

contracting path. Instead of using the standard set of

convolution layers, this approach is suggested to enhance the

performance of the network. The decoder module of the

proposed architecture has similarities with the original UNet.

Specific details of the architecture are shown in Figure 7. Prior

to processing, the images were resized from their original size

of 320x227 to 320x224. Figure 5 provides information on the

number of channels, levels, and resolution for each feature

map, while Figure 6 illustrates the detailed block architecture

of the encoder. To recreate the segmentation map with the

same size as the input image, the feature map from the final

logit of the encoder is bilinearly upsampled by a factor of two

and then combined with the feature map from the encoder that

has the same spatial resolution. Following this, 3x3

convolution layers are added, and another upsampling by a

factor of two is performed. This process is repeated until the

segmentation map is recreated with the input image of same

size. Unlike the original UNet, the proposed architecture is

asymmetrical, with a shallower expansion path than the

contraction path. When a powerful CNN encoder like

EfficientNet is used, the overall performance of the method is

improved.

4.3 Extraction of hand keypoints

For image point matching, the proposed Scale Invariant

Feature Transformation approach (SIFT), which produces a

reliable keypoint estimator. The features recovered from SIFT

are constant to image scale and rotation and are shown to

provide reliable matching over a wide range of affine

distortion, variation in three-dimensional viewpoint, inclusion

of noise, and lighting modification. To extract the Keypoints

from the blob, use the Laplacian of Gaussian (LoG) with

various. With the help of orientation and gradient magnitude

across all key points, this estimator generates a vector

containing the values of all the appearances in the orientation

histogram. The height HN and width WN of the featured

image are:

𝑊𝑁 = 𝑊𝐵𝐵 × 0.5 + 50, 𝐻𝑁 = 𝐻𝐵𝐵 × 3.5 + 1 (2)

In Eq. (2) HBB and WBB delineates sizes of specific

object’s bounding box. The normalized image includes a

frame of 1-pixel width to prevent local maxima from being

extracted outside of the borders. Then, distance transform (DT)

is used to create a grayscale image in which each backdrop

pixel's concentration corresponds to its L1 expanse from the

closest forefront pixel. The local maximum is then located on

the DT image using a k x k square window. It generates linked

components with comparable pixel intensities. Keypoints are

then extracted as the focal point of the accumulation of

connected items. Every DT picture pixel has a k X k square

window, which is used to identify local maxima. Quantity of

local maxima that are extracted is affected by criterion k. Less

important keypoints are recognized as k grows larger. Since

some of the keypoints in the excerpt may have been produced

by noise and contour disturbances, they might not be entirely

necessary. Key-points which maintains the riveted positions

when local image deformation is applied stay more distinct

than keypoints that shift while local image deformation is

applied. Scale-space filtering is used in the phase as part of the

key-point filtering technique [17]. This process produces a

series of blurred images using a Gaussian filter, with the s

function being represented by Eq (3).

𝑔(𝑥, 𝑦, 𝛼) =
1

2𝜋𝛼2
𝑒−(𝑥+𝑦)2

/2𝛼 (3)

where, 𝛼 stands for the scale-managing smoothing criteria,

and x and y stand for X and y pixel synchronization. Then,

Otsu's technique is used to binarize the filtered images. The

method is used to create N images that are progressively more

distorted, which are then used to extract key points. The use of

a cosine similarity index is then used to determine similarity.

The relevant rotating matrix models are created for the posture

estimate based on the pitch angle, roll angle and yaw angle.

The rotating benchmark Keypoints can remain near to the

Keypoints with the indeterminate pose relative to the objective

function. Together with the three rotation angles and the depth,

additional considerations include scaling and shifting. To

make the formula simpler, the Keypoints of the various stance

images are taken to be the same. Hence, there are six unknown

variables in the posture vector. The model is formulated as:

𝑐(𝛼, 𝛽, 𝛾, 𝑧, 𝐶, 𝑡) = 𝑚𝑖𝑛{∑ ‖𝑞𝑖 𝐶. [𝑅(𝛼, 𝛽, 𝛾). 𝑝𝑖

𝑛

𝑖=1

+ 𝑡]|| 2}

(4)

In this context, 'qi' represents the coordinate data of the image,

whereas 'pi' refers to the 3D coordinate point of the frontal key-

points of the joint. The variables 'α', 'β', and 'γ' correspond to

the rotational angles, while 'z' pertains to the depth of the front.

Additionally, 'C' represents the scaling factor, and 't' denotes

the shifting factor. The rotations that are carried out by

subsequent joints in relation to a given reference pose are what

the hand pose configuration requirements are concerned with.

Local coordinate systems are used to indicate rotations. As a

result, the most obvious way to define similarity between two

postures, P1 and P2, is to look at the total distance travelled by

associated skeletal joints as a whole.

694

𝑑(𝑃1, 𝑃2)
= 𝑑𝑗𝑜𝑖𝑛𝑡

𝛴 (𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑃1(𝑗𝑜𝑖𝑛𝑡). 𝑃2(𝑗𝑜𝑖𝑛𝑡))
(5)

As a result, the major challenge still lies in choosing the

correct distance function rotation to handle the estimation of

the difference between the two rotations. By definition,

rotations are represented by the 3 Euler angles (α, β, γ). Such

details consist underlying rotations carried out around local

coordinate system axes. Hence, any traditional vector space

distance function could be used for cosine metrics.

𝛥(𝛼1, 𝛼2) = П − ‖ 𝛼1 − 𝛼2| − П (6)

Quaternions provide a diverse, effective, and succinct

representation of rotations. These are developments related to

complex numbers with a three-dimensional section:

𝑄 = 𝑎 + 𝑖. 𝑏 + 𝑗. 𝑐 + 𝑘. 𝑑 (7)

Calculations are performed for the imaginary vector

sections (b, c, and d) and the quaternion's scalar section

(a=cos(2)) in the scenario of rotation with an angle of along

the axis, which is expressed by a unit length vector u. Another

method would define its cosine as a nonlinear conversion of

geodesic distance in place of the raw angle.

𝑑cos𝑖𝑛𝑒(𝑞1, 𝑞2) =
1 − (𝑞1, 𝑞2)

2
 (8)

The posture similarity of the hand progression between the

student and the teacher is used to calculate the pose precision.

S(p)

=
1

Te(t) − Tt(s) + 1
∑ exp (−

fi(t) − f(t)

β
)

Ti

i=Tt(t)

(9)

in which the ith frame's vectors fi t and f′ t, respectively,

indicate the hand gesture characteristics of the student and

tutor, and the symbol stands for a criterion that regulates the

amount of deviations from the instructor's hand gesture. The

total biased scores of timing and pose accuracy are used to

define the dance series between the student and teacher as:

S =
1

N
∑ 𝑆𝑗(𝑡)𝑆𝑗(𝑝)

N

i=1
 (10)

where, N stands for the number of hand gesture sequences that

a student will perform, and Sj(t)Sj(p) stands for the

appropriateness of time and posture in the jth sequence.

4.4 CNN-LSTM classification of hand mudras

The CNN Long Short-Term Memory Network, sometimes

known as CNN LSTM for short, is an LSTM architecture

created especially for issues involving the sequence prediction

of inputs having a spatial component, such as images or videos.

Convolutional Neural Network (CNN) layers are used in the

CNN LSTM architecture to extract features from input data,

and LSTMs are used to assist sequence prediction. The

classifier CNN-LSTM is trained using the retrieved features.

The CNN and LSTM structures are incorporated in the CNN-

LSTM. The needed details have been learned in the classifier

and the feature data has been taught in the CNN-LSTM deep

learning structure, as shown in the architectural diagram in

Figure 8. The Hybrid design The suggested methodology uses

CNN-LSTM as both the classifier and the forecasting network

structure. The benefit of the suggested methodology is that it

addresses accuracy. CNN-LSTM has a higher accuracy value

thanks to the hybrid structure's pose-estimated key locations.

With CNN-LSTM, categorization is done after the key points

have been extracted.

First, the input representation with the essential points

excised is convolved using convolutional level C-1 with 3x3

kernal in addition to ReLU rectifier. Every feature vector

produced by the layer has a constant size of 32 x 32. There are

two more levels, C-2 and C-3, which are positioned

successively. A pooling level named P-1 with a kernel

dimension of 2x2 is shown after layer C-3. The output of P-1

produces a 16 x16 kernel when the pooling layer uses a 2x2

kernel. After the P-1 layer, the dense layer, which produces

512 neurons, is displayed. The layer's output is used as the

input layer for the LSTM.

Figure 8. CNN-LSTM Architecture for mudra classification

Figure 9. Building blocks of the CNN-LSTM classifier in the

EfficientNet-UNet architecture

We converted the data into a time sequence when the layer

included a unidimensional vector. All TS information that we

695

produced, ranging from x1 to xs, includes an ID of dimension

q, similar to c1 to cb, where s is b 432. After a drop-out of 25%

of the information, a dense level with 54 neurons is located

succeeding the LSTM level. The decision layer is then placed,

as shown in Figure 9, to distinguish between the many styles

of hand gestures focused on stance. The mathematical formula

for the layer-l convolution procedure is shown as:

𝐶𝑗 = 𝑓 𝑚𝑚𝑖𝐸𝑀
𝛴 𝑖 × 𝑘𝑗 + 𝑏𝑗 (11)

The activation function is represented by f, the convolution

kernel dimension is represented by F1, and Kj (j = 1, 2, F1)

denotes the ConV bias, kernal of the j-th ConV kernel. One

may create F1 feature maps using F1 convolution kernels. The

layer l pooling operation is displayed as:

Sj = βj down(cj) + bj (12)

where, down(cj) stands for the subsampling technique, and bj

stands for bias. j βj (j 1, 2, F1) denotes multiplicative bias of j-

th pooling. The CNN paradigm's loss function uses mean

squared error with an L2 normal distribution as well as

observed values and fitted CNN values at the appropriate time

stamps (tk) for the input image I. M continues to be the number

of training data to prevent overfitting, an L2 regularization

constraint is used. The state of the cell, which contains the

information to be remembered and passed to the following cell,

is the more important component. The short-term states (ht)

and long-term states (Ct) are divided into two categories.

Finally, three control gates (forget, input, and output gates) are

added to the state route to control and prepare the cell states.

Determining how many data from the input image details

X(t) and the previous output h (t — 1) should be excluded from

the LSTM cell's first phase is still necessary. A sigmoid layer

known as the "forget gate layer (ft)" reliably generates this

preference. This evaluates the values of h(t 1) and X(t) for

creating each cell's state C(t 1) values between 0 and 1, which

denotes disregarding the value and 1, which denotes having it.

How to handle data extrication from the previous long-term

state C is demonstrated in Eq. (13).

f(t) = σ(W𝑓[ℎ(𝑡 − 1), 𝑋(𝑡)] + 𝑏(𝑓)) (13)

where, Wf and bf corresponds to weight matriX and bias in the

case where stands for the sigmoid function. The current data

that needs to be produced in the next state and given to the

input gate for memorization in the cell state. There are two

steps we should take to accomplish this: Initially, a "input gate

later it" layer sigmoid. The values that need to be updated are

determined by Eq. (14).

I(t) = σ(Wi[h(t − 1), X(t)] + b(i)) (14)

The creation of a vector of new values Ct for Eq. (15) that

is to be considered in the state is thus the focus of a tangent

hyperbolic layer. Afterwards, these elements are combined to

create a state update.

C(t) = tanh(Wc[h(t − 1)], X(t)] + b(c)) (15)

where, Wc and Wi represent weight matrices, and b(i) and b(c)

stand for the bias terms. The final outcome gate, or final phase,

decides what data was last created at the conclusion of the cell.

According to Eq. (16), the final outcome gate computation is

based on the cell state, and Eq. (17) describes how to update

the hidden state.

O(t) = β(W0[h(t − 1), X(t)] + b(0)) (16)

H(t) = O(t)tanh(C(t)) (17)

Weight matriX and bias are represented in Eq. (16) by Wo

and b(o). Block output is repeatedly connected to the input and

all of the gates. The evaluation results are classified based on

the probability index of the chosen class having characteristics

in additional to the corresponding function by evaluating

training data.

Table 1. Accuracy of current and suggested techniques for

various Epochs

Epochs 15 25 35 45 65

LRCN 71.4 73.4 73.4 75.2 77.42

CONV3D 84.4 83.4 86.5 86.3 88.58

MLP 73.4 73.4 77.3 82.3 84.56

LSTM 71.3 74.4 76.3 77.4 77.32

CNN-LSTM(Proposed) 96.6 97.3 98.1 98.4 98.03

Table 2. Precision of current and suggested techniques for

various Epochs

Epochs 15 25 35 45 65

LRCN 76.5 81.4 83.4 83.1 87.3

CONV3D 76.2 77.3 80.5 82.4 85.3

MLP 82.2 83.2 83.2 85.3 88.6

LSTM 85.2 88.3 88.6 91.6 93.45

CNN-LSTM(Proposed) 85.7 87.6 91.2 91.3 93.04

Table 3. Recall of current and suggested techniques for

various Epochs

Epochs 15 25 35 45 65

LRCN 68.4 74.8 72.4 75.5 77.6

CONV3D 82.3 88.9 87.5 86.6 85.3

MLP 81.3 83.2 84.3 86.5 86.54

LSTM 88.3 91.4 92.3 94.4 93.5

CNN-LSTM(Proposed) 93.4 93.3 97.2 98.2 97.24

Table 4. AUC Scores of current and suggested techniques for

various Epochs

Epochs 15 25 35 45 65

LRCN 77.4 81.4 83.4 83.2 85.5

CONV3D 81.2 80.3 83.5 83.5 84.6

MLP 73.2 75.4 78.2 80.3 82.46

LSTM 73.3 74.6 77.1 72.3 77.32

CNN-LSTM(Proposed) 94.7 95.3 96.2 97.3 98.72

Table 5. F1-Score of current and suggested techniques for

various Epochs

Epochs 15 25 35 45 65

LRCN 71.5 73.2 75.6 75.3 77.35

CONV3D 82.3 83.5 84.5 86.2 88.45

MLP 73.2 75.2 78.3 82.3 82.45

LSTM 71.6 74.2 76.2 77.2 77.32

CNN-LSTM(Proposed) 96.6 95.7 96.45 97.03 97.36

696

Table 6. Association between current and suggested

approaches for analyzing classifiers

Criteria LRCN CONV3D MLP LSTM
CNN-LSTM

(Proposed)

Accuracy 92.6 84.6 83.3 92.4 97.53

Precision 77.43 88.2 82.46 77.32 98.05

Recall 77.6 85.5 85.56 93.3 97.48
AUC

Score
85.5 84.6 88.6 84.3 98.13

F1-Score 93.1 92.2 88.5 82.3 97.75

Table 7. Association between current and proposed methods

for training classifiers

Measures LRCN CONV3D MLP LSTM
CNN-LSTM

(Proposed)

Accuracy 85.4 84.2 87.6 92.42 93.02

Precision 77.7 86.5 93.5 91.5 92.12

Recall 82.5 86.4 94.3 81.7 93.77
AUC

Score
87.6 73.6 88.3 82.4 95.45

F1-Score 88.5 90.5 87.3 86.4 92.53

Figure 10. (a) Accuracy graph (b) Loss graph

Figure 11. Accuracy correlation between current and

planned methods

Figure 12. F1-score correlation between currently used and

new methods

Figure 13. Precision correlation between currently used and

new methods

Figure 14. AUC specificity between currently used and

newly proposed approaches is correlated

Figure 15. Recall correlation between currently used and

new methods

5. RESULTS AND DISCUSSION

The suggested technique was put into practise on a

computer running Windows 10 using Python 3.6. The desktop

computer was equipped with a 3.60 GHz Intel® Core-i7-

7700[53] processor, 16 GB of RAM, and an 8 GB NVIDIA

GeForce GTX 1070 graphics processing unit (GPU).

5.1 Performance analysis

There are total 252 YouTube videos of the Bharatanatyam

dance form has been used to make up the dataset used in our

research. There are a total of 25 video clips with a 400A-U350

maximum resolution and a 25 s maximum runtime. With the

YouTube dance class video as a reference, we enhanced the

697

content. Our device also chopped video segments into five to

six second chunks of the casing while dispensing information,

yielding a maximum of 150 frames. The ratio of 7:3 was

selected as the train to examine for assessment. The result

dataset presented numerous challenges, including variations in

lighting, dancers' shading on the dais, uniform dance positions,

etc. This dataset is made more difficult by the fragmentary

hand portions missing in a few sequences and the less accurate

skeletal cooperative synchronizing. 252 videos altogether

were considered for the experiment.

Using Python software, the experimental results are

analyzed based on various evaluation metrics, including the

f1-score, accuracy, precision, recall, and AUC curve. The

assessment is performed for four distinct techniques, namely

Convolutional LSTM (LRCN), Multilayer Perceptron (MLP),

LSTM, and CONV3D, in conjunction with the proposed

CNN-LSTM model. The training process for Pose estimation,

using the complete set of feature data, was carried out over a

period of 65 epochs with batch size 4.

·Accuracy: The percentage regarding correctly classified

samples during categorization is shown here.

𝐴𝑐𝑢𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100

· Precision: This determines what proportion of

information sent to the network contains intrusions. It is used

to calculate the precision of the classifier.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

·Recall: It gives the proportion of correctly anticipated

positive Real Positives, and it is defined as

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

·F1-Score: This F1-Score displays the mean recall and

accuracy values. Recall is still the instance-based

determination of the keyfeature known as faulty or non-faulty,

whereas precision is still the prediction of accuracy.

𝑓1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The accuracy of training and testing, the loss of training and

testing, and 65 epochs are shown in Figures. 10(a) and (b). The

proposed CNN-LSTM (proposed) technique was examined

using different epochs, and the accuracy has been computed

for the emerging and proposed methods. The loss gradually

dropped as the number of epochs rose, demonstrating the

significance of the proposed technique. The Tables 1 through

5 list the performance measures for accuracy, precision, recall,

F1-Score, and AUC. The graph from Tables 6, 7 shows the

association between the existing and suggested strategies, does

the same. Thanks to EfficientNet-UNet and heavily processed

similarity index to remove the blob at the Key points' edges,

the suggested solutions are shown to be very well balanced as

the number of epochs increases.

The accuracy of the suggested technique CNN-LSTM

(proffered) is 85.7%, 87.6%, 91.2%, 91.3%, and 93.04% at

different epochs level at 15, 25, 35, 45, and 65. It has been

compared with the emerging techniques LRCN, CONV3D,

MLP, and LSTM, and the results have been visually plotted in

Figure 11. Also, it has been noted that the suggested

procedures provide a greater level of accuracy, 93.04% at the

65 Epoch level.

The F1- Score for the proposed technique CNN-LSTM

(proffered) is 96.6%, 95.7%, 96.45%, 97.03%, and 97.36% for

different Epoch levels of 10, 25, 35, 45, and 65. It has been

compared with the existing techniques CONV3D, LRCN,

LSTM, and MLP techniques in the graph shown in Figure 12.

The F1- Score for the suggested method at the 65 epochs was

found to be 97.36 %.

The precision of the proposed CNN-LSTM approach

(proffered) is 96.6%, 97.3%, 98.1%, 98.4%, and 98.03% at

different epoch levels at 15, 25, 35, 45, and 65. It has been

compared to the existing CONV3D, LRCN, LSTM, and MLP

techniques, and the results are shown graphically in Figure 13.

At 65 epochs, it has been determined that the proposed

methodology delivers a 98.03%. For different Epochs levels

of 15, 25, 35, 45, and 65, the proposed technique.

The proposed technique CNN-LSTM (proffered) achieves

94.7%, 95.3%, 96.2%, 97.3%, and 98.72% AUC Score at

various Epochs levels of 15, 25, 35, 45, and 65. It has been

compared with the current techniques CONV3D, LRCN,

LSTM, and MLP techniques in the graph shown in Figure14.

The proposed method was found to have a 98.72% AUC at the

65 epochs.

CNN-LSTM (proposed) achieves 93.4%, 93.3%, 97.2%,

98.2%, and 97.24% recall. It has been contrasted with the

existing techniques CONV3D, LRCN, LSTM, and MLP in the

graph shown in Figure 15. At the 65 epochs, the proposed

method was determined to have a 97.24% accuracy.

Figure 16. Examination of overall performance for testing

classifiers

Figure 17. Analysis of the overall effectiveness of the

suggested and used strategies

The overall collation of the proposed CNN-LSTM

technique with the current ones is depicted in Figure 15, and it

698

is clear that the suggested technique outperforms the existing

ones in terms of highest classified output. To construct a

stacked array for each video, we selected 48 frames at random

from each movie and fed them into the Tensor flow

EfficientNet-UNet pre-trained paradigm. The input

dimensions of the model are the batch, feature dimensions (32,

48, 2048) and specimen, we sent the CNN-LSTM output and

two completely integrated layers to the softmax layer for

evaluation. The CNN-LSTM architecture yields superior

outcomes when compared to the other assessed deep learning

frameworks. It is clear that the suggested approaches

outperform the present ones for the highest classified output.

According to the highest Classifier Performance Metrics, the

new techniques exceed the current way of pose estimation, as

is evident visually in the aforementioned Figure 16. Results

from the Tensorflow EfficientNet-UNet joined using a

similarity index were slightly more refined than those

combined using a hand pose signature. Figure 17 depicts an

overall comparison of the proposed CNN-LSTM processes

with the Established procedures. Our system distinguishes the

movements of hand across a number of frames focused on its

previous hand pose sequence and later predicts the hand

gesture out of the action sequence.

(a)

(b)

Figure 18. Similarity checking between student and dancer

to ensure right dance (a) Garuda mudra Similarity index (b)

Matsya mudra similarity index

To get normalized expanse to the rest of an anchor joint, we

chose mutual 7 as an orienting point. In Euclidean expanse

norm, distance is used as the distance metric. In order to depict

the hand gesture, we also incorporated the angles among

important anchor joints. Figures 18(a) & (b) shows the method

of comparing similarity between hand gestures, and is

represented by an intensity value. When a learner tries to

imitate a dance teacher, this result demonstrates an instant

dance analysis and a dance representation of each a hand

movement. Prior to being trained, the image dataset undergoes

a pre-processing phase where a variety of image manipulation

methods such as rescaling, thresholding, and scaling are

utilized to enhance the dataset's suitability for precise fitting

by the neural network.

Semantic understanding of a shloka using hand gestures

We selected a YouTube video to show how it is possible to

interpret the dancer's hand gestures in order to understand the

meaning of the performed dance performance. The Guru

Stuti,a crucial shloka (short poem/invocation) in Hindu texts,

is performed here by a dancer:

Gurur Brahma Gurur Vishnum Gurur Devo

Maheshwaraha Guru Sakshat Parabrahma Tasmai Shree

Gurave Namaha.

I view you as Brahma, teacher. Teacher. You are Vishnu to

me. I regard you as Maheshwaraha, Guru (Shiva). You rule

over all lords. I bowed before you. Using our previously

trained SVM or CNN classifier, we can break down the

YouTube video of the dancer reciting this shloka into

individual frames and identify the hand motions. As seen in

Figure 19(a), the dancer's right hand is making the Hamsasye

gesture , which is associated with the phrase "Gurur Brahma"

and has been successfully detected by both of our Cnn

architectures. The double hand motions made by the dancer in

Figure 19(b) and Figure 19(c) are accurately classified by our

proposed model as Shankha and Chakra, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Identification of hand gestures to comprehend the

meaning of a shloka (Guru Stuti)

The phrases Gurur Vishnum in the Shloka are referenced by

these two hand motions. Chakra denotes a disc or a wheel in

Sanskrit. The Sudarshan Chakra of Lord Vishnu is represented

by this two-handed gesture. In Figure 19(d), the dancer is

depicted making a single hand motion for the word "Devo"

from the Shloka by Pataka. The trained model can distinguish

the left hand motion, but due to a wide range in viewing angles,

our model can identify the right hand gesture. Figure 19(e)

depicts the word Maheshwaraha being spoken while making

the Shivalinga sign with two hands. Both the SVM trained

models and CNN are capable of correctly identifying this

gesture. In Figure 19(f), the phrases Gurur Sakshat are shown

as single-handed Pataka movements in each hand. By utilizing

her left hand, the performer made this move, which the

suggested model was able to recognize. The dancer is depicted

in Figure 19(g) performing the word Parabrahma, which

means "salutation to the Almighty”. Our model can recognize

Anjali's double hand gesture in Figure 19(h). The final

699

salutation to the teacher, Guruve Namahe, is indicated by this

motion.

6. CONCLUSIONS

Previous approaches involved fitting a flexible hand model

to the deep figure, which poses computational challenges.

Nonetheless, this approach enables the intermediate frame to

serve as the initial value for subsequent frames. However,

considering multiple frames simultaneously becomes

necessary to prevent increasing inaccuracies over time. Real-

world challenges, such as posture variations, occlusion,

illumination changes, and other factors, make hand position

direction estimation particularly difficult. Consequently,

numerous techniques have been developed over time to

address these issues. This study presents a framework for

classifying hasta mudras in the Bharatanatyam dancing style.

In our Convolution Neural Network - Long Short Term

Memory (CNN-LSTM) deep knowledge architecture for

Indian Classical Dancing (ICD) classification, we added a new

hand pose signature. We evaluated dancing performances by

estimating the positions of human hands. In this architecture,

hand poses are evaluated using information and information

pruning, while pupil dance timing and correctness are

evaluated using a dance tutor application. As a result, several

pre-processing stages were carried out, including image

processing, to aid in the feature extraction process. As a result,

it is noted that throughout the examination process, the

proposed CNN-LSTM achieves 93.04% accuracy, 98.03%

precision, 97.24% recall, 98.72% AUC score, and 97.36% f1-

score. This hand position estimation network was constructed

using a EfficientNet-UNet architecture, which lowers the

complexity of the runtime. Because it is a lightweight network,

it can also be operated by CPUs. This technology is suggested

for use in a number of applications, including human computer

interaction systems, digital dance learning platforms, hand

activity identification in videos, and game analysis. By

removing occlusion issues at the pre-processing stage, the

work will be expanded in the future to increase the hand

posture estimation and classification accuracy.

REFERENCES

[1] Bennink, L.P., Deekshithar, K.R., Deekshithar, J.R.,

Deekshithar, S.R. (2013). Shiva's Karanas in the temples

of Tamil Nadu: the Natya Shastra in stone.

[2] http://natyanjali.blogspot.in/

[3] Okada, A., Buckingham Shum, S., Sherborne, T. (2008).

Knowledge cartography. Software Tools and Mapping

Techniques. https://doi.org/10.1007/978-1-4471-6470-8

[4] Bailey, H., Bachler, M., Buckingham Shum, S., Le Blanc,

A., Popat, S., Rowley, A., Turner, M. (2009). Dancing on

the grid: using e-science tools to extend choreographic

research. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering

Sciences, 367(1898): 2793-2806.

https://doi.org/10.1098/rsta.2009.0048

[5] LeCun, Y., Huang, F.J., Bottou, L. (2004). Learning

methods for generic object recognition with invariance to

pose and lighting. In Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition, 2004. CVPR 2004, pp. II-104.

https://doi.org/10.1109/CVPR.2004.1315150

[6] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

Imagenet classification with deep convolutional neural

networks. Advances in Neural Information Processing

Systems, pp. 25.

[7] Mallik, A., Chaudhury, S., Ghosh, H. (2010).

Preservation of intangible heritage: A case-study of

indian classical dance. In Proceedings of the Second

Workshop on Eheritage and Digital Art Preservation, pp.

31-36. https://doi.org/10.1145/1877922.1877932

[8] Samanta, S., Purkait, P., Chanda, B. (2012). Indian

classical dance classification by learning dance pose

bases. In 2012 IEEE Workshop on the Applications of

Computer Vision (WACV), CO, USA, pp. 265-270.

https://doi.org/10.1109/WACV.2012.6163050

[9] Kapsouras, I., Karanikolos, S., Nikolaidis, N., Tefas, A.

(2013). Folk dance recognition using a bag of words

approach and ISA/STIP features. In Proceedings of the

6th Balkan Conference in Informatics, Thessaloniki,

Greece, pp. 71-74.

https://doi.org/10.1145/2490257.2490271

[10] Kapsouras, I., Karanikolos, S., Nikolaidis, N., Tefas, A.

(2013). Feature comparison and feature fusion for

traditional dances recognition. In Engineering

Applications of Neural Networks: 14th International

Conference, EANN 2013, Halkidiki, Greece, pp. 172-

181. https://doi.org/10.1007/978-3-642-41013-0_18

[11] Forsyth, D.A., Fleck, M.M. (1997). Body plans. In

Proceedings of IEEE Computer Society Conference On

Computer Vision And Pattern Recognition, PR, USA, pp.

678-683. https://doi.org/10.1109/CVPR.1997.609399

[12] O'rourke, J., Badler, N.I. (1980). Model-based image

analysis of human motion using constraint propagation.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, (6): 522-536.

https://doi.org/10.1109/TPAMI.1980.6447699

[13] Andriluka, M., Roth, S., Schiele, B. (2009). Pictorial

structures revisited: People detection and articulated pose

estimation. In 2009 IEEE Conference On Computer

Vision And Pattern Recognition, Miami, FL, USA, pp.

1014-1021.

https://doi.org/10.1109/CVPR.2009.5206754

[14] Ning, H., Xu, W., Gong, Y., Huang, T. (2008).

Discriminative learning of visual words for 3D human

pose estimation. In 2008 IEEE Conference on Computer

Vision and Pattern Recognition, AK, USA, pp. 1-8.

https://doi.org/10.1109/CVPR.2008.4587534

[15] Pisharady, P.K., Vadakkepat, P., Loh, A.P. (2013).

Attention based detection and recognition of hand

postures against complex backgrounds. International

Journal of Computer Vision, 101: 403-419.

https://doi.org/10.1007/s11263-012-0560-5

[16] Yang, Y., Fermuller, C., Li, Y., Aloimonos, Y. (2015).

Grasp type revisited: A modern perspective on a classical

feature for vision. In Proceedings of the IEEE

Conference On Computer Vision And Pattern

Recognition, Boston, MA, USA, pp. 400-408.

https://doi.org/10.1109/CVPR.2015.7298637

[17] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

Salakhutdinov, R. (2014). Dropout: a simple way to

prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1): 1929-1958.

700

http://natyanjali.blogspot.in/

[18] Stenger, B., Thayananthan, A., Torr, P.H., Cipolla, R.

(2006). Model-based hand tracking using a hierarchical

bayesian filter. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(9): 1372-1384.

https://doi.org/10.1109/TPAMI.2006.189

[19] Hariharan, D., Acharya, T., Mitra, S. (2011).

Recognizing hand gestures of a dancer. In Pattern

Recognition and Machine Intelligence: 4th International

Conference, PReMI 2011, Moscow, Russia, pp. 186-192.

https://doi.org/10.1007/978-3-642-21786-9_32

[20] Gautam, S., Joshi, G., Garg, N. (2017). Classification of

Indian classical dance steps using HOG features.

published in International Journal of Advance Research

in Science and Engineering (IJARSE), 6(8).

[21] Rani, C.J., Devarakonda, N., Kumari, K.N. (2021). A

monadic framework for real-time 2D multi person pose

detection for captured images and videos. In 2021 Fourth

International Conference on Electrical, Computer and

Communication Technologies (ICECCT), Erode, India,

pp. 1-6.

https://doi.org/10.1109/ICECCT52121.2021.9616673

[22] Malavath, P., Devarakonda, N., Polkowski, Z., rani, C. J.

(2022). Assessment of 3-Dimensional hand pose by

poseprior network for images. In Proceedings of Data

Analytics and Management: ICDAM 2021, 2: 721-738.

https://doi.org/10.1007/978-981-16-6285-0_58

[23] Bandaragoda, T., Adikari, A., Nawaratne, R.,

Nallaperuma, D., Luhach, A.K., Kempitiya, T., Nguyen,

S., Alahakoon, D., de Silva, D., Chilamkurti, N. (2020).

Artificial intelligence based commuter behaviour

profiling framework using Internet of things for real-time

decision-making. Neural Computing and Applications,

32: 16057-16071. https://doi.org/10.1007/s00521-020-

04736-7

[24] Gunawardena, P., Amila, O., Sudarshana, H., Nawaratne,

R., Luhach, A.K., Alahakoon, D., De Silva, D. (2021).

Real-time automated video highlight generation with

dual-stream hierarchical growing self-organizing maps.

Journal of Real-Time Image Processing, 18: 1457-1475.

https://doi.org/10.1007/s11554- 020-00957-0

[25] Ronneberger, O., Fischer, P., Brox, T. (2015). U- net:

Convolutional networks for biomedical image segmen-

tation. In Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2015, pp. 234-241,

Cham. https://doi.org/10.48550/arXiv.1505.04597

[26] Tan, M., Le, Q. (2019). Efficientnet: Rethinking model

scaling for convolutional neural networks. In

International Conference on Machine Learning, pp.

6105-6114. https://arxiv.org/pdf/1905.11946v1.pdf.

[27] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,

L.C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE Conference On

Computer Vision And Pattern Recognition, Salt Lake

City, UT, USA, pp. 4510-4520.

https://doi.org/10.1109/CVPR.2018.00474

701

https://doi.org/10.1007/978-981-16-6285-0_58
https://doi.org/10.1007/s11554-020-00957-0
https://doi.org/10.1007/s11554-020-00957-0

