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The human body's temporal fluctuation is referred to as human activity. The preservation 

of cultural heritage, the development of video recommendation systems, the support of 

learners via tutoring systems will benefit from the capture and evaluation of dance-related 

multimedia content. Because of its detailed hand gesture, Indian classical dance (ICD) 

classification is still an enthralling field of study. This provides a framework for analyzing 

various computer vision and deep learning ideas. Automated teaching solutions across all 

disciplines, from traditional to online forums, become unavoidable through changes in 

learning habits. ICD also becomes a crucial component of a thriving culture and heritage 

that must be updated and preserved at all costs. The dance involves complex positions like 

self-hands-occlusion and full-body rotation. The main objective of this study is, in the 

Bharatanatyam dancing style we proposed a framework for categorizing hasta mudras. Our 

Convolution Neural Network - Long Short Term Memory (CNN-LSTM) deep knowledge 

architecture for Indian Classical Dancing (ICD) categorization now includes a new hand 

posture signature. By guessing where people's hands would be, we rated dance 

performances. This architecture assesses hand poses using information and information 

pruning, while a dance instructor application assesses the time and accuracy of student 

dances. 252 YouTube videos of the Bharatanatyam dance form has been used to make up 

the dataset used in our research.This study offers a methodology with three-phase deep 

learning techniques. Then, using the pre-trained paradigm TensorFlow EfficientNet –UNet, 

which aids us in determining any hand position within the frame, we extracted the 

appropriate joint locations of the hands from each video frame. Then, cosine similarity was 

used to identify or correlate the indicated action factors. Finally, using key details from the 

hand pose, we categorized it and trained the Convolution Neural Network - Long Short 

Term Memory (CNN-LSTM) network structure using the classification system's training 

dataset. Regarding factors like accuracy, F1-score, AUC curve, recall and precision, the 

proposed CNN-LSTM structure for classifying hand mudras is compared with 

Convolutional LSTM Long Term Recurrent Convolutional Network(LRCN), Multilayer 

Perceptron (MLP), LSTM and 3D Convolutional Layer (CONV3D). As a result, it was 

found that throughout the examination process, the proposed CNN-LSTM classification 

structure achieved 98.53% accuracy, 99.04% precision, 98.49% recall, 99.12% AUC score, 

and 98.74% F1-score. This achieves 94.03% accuracy, 93.13% precision, 94.76% recall, 

96.06% AUC score, and 93.53% F1-score during the training method. 
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1. INTRODUCTION

Indian classical dance has been practiced and performed all 

over the world for more than 5000 years. But only the expert 

can fully comprehend the explication of the dancing 

movements and hand gestures, in addition of sophisticated 

steps accompanied by music and poetry recitation. According 

to "Natya Shastra – Indian Classical Dance Form”, these 

traditional dance styles are known as "Natya Rasa." There are 

108 karanas (gestures), which refer to actions of the hands, feet, 

and body, according to Natya Shastra [1]. These hand gestures 

represent a variety of bodily associations with god, nature, and 

behaviours. In Figure 1, a few hasta mudras [2] are displayed. 

The postures of the well-known classical dance style 

Bharatnatyam have been maintained in the Chidambaram 

temple located in Tamil Nadu, which is where temples from 

ancient and mediaeval India show sculptures with detailed 

details of beautiful dance postures. The Natya Shastra is the 

most well-known and thorough treatise on dance, theatre, and 

music performance. It contains precise instructions detailing 

the language and principles related to classical dance, music, 

and almost every facet of drama, and is usually thought to be 

2000 years old. 

The fundamental principles described in Natya Shastra have 

been interpreted differently over time by numerous artists 

from various art and dance schools. However, the original 

Natya Shastra, which is preserved at the Chidambaram temple 

[1] and was built about the 12th century A.D., has a set of 108

dancing positions known as Karanas (gestures). Even now,

Bharatnatyam dancers still portray these stances, as seen in

Figure 1.

Figure 2(a) depicts a dancer striking the Nataraj posture, 

while Figure 2(b) depicts the matching sculpture (b). Vartita 

Karana from the Bharatnatyam dance style is shown being 
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performed by a performer in Figure 2(c). The same Karana 

from Figure 2 is depicted in a sculpture on the walls of a 25th-

century temple (c). The litany of a poem or song performed by 

music goes together with the dancer's use of body positions 

and different hand gestures to express semantic meaning. 

 

 
 

Figure 1. Asamyuktha Hasta Mudras (Single Hand Gestures) 

and Samyuktha Hasta Mudras (Double Hand Gestures) 

 

 
(a)                (b)                (c)                (d) 

 

Figure 2. (a) The posture of Nataraj [1]; (b) A sculpture 

delineating Nataraj pose; (c) The vartita Karana [1]; (d) A 

sculpture portraying the same Karana 

 

In addition to observing hand position, it is important to 

read hasta mudras to understand the denotation of the different 

dance forms. The Natya Shastra mentions 28 Asamyukta 

(Single hand gestures) Hasta Mudras : Tripathaka, 

Kartarimukha, Pataaka, Ardhapataka, Mayuram, Araalam, 

Ardhachandram, Mushti, Shukatunda, Kapitta, Shikara, Suchi, 

Padmakosha, Chadrakala, Sarpashika, Mrigashirsha, Kangula, 

Simhamukha, Chatura, Alapadma, Bhramara, Hansapakshika, 

Hamsasye, Mukula, Sandamsha, Trishula, Tamrachuda. 

Moreover, four new hasta mudras( Hand Gestures—Kataka, 

Vyagraha, Ardhasuchi, and Palli—were added to this 

collection over time. Samyuktha Hasta mudras (Double Hand 

Gestures) in contrast to these one-handed gestures, call for the 

employment of 60 both hands to communicate a message or 

specific sense. There are 24 (Samyuktha Hasta Mudras) 

double hand gestures recorded in the Natya Shastra: Karkata, 

Kapota, Anjali, Swastika, Utsanga, Piushpaputa, Shivalinga, 

Kartariswastika, Kataka-vardhana, Shakata, Pasha, 

Shankha,Chakra, Kilaka, Samputa, Kiurma, Matsya, Varaha, 

Nagabandha, Garuda, Khatava, Avhitta, Bhairunda. The 

dancer employs both single and 65 double hand movements to 

illustrate the significance of the poem or song that is being 

performed. Bailey and co-authors' study [4] looks at how 

studies on dance is impacted by recently established e-Science 

technologies. The study focuses on the outcomes of the e-

Dance project, a two-year interdisciplinary research initiative 

that explores the integration of choreography, advanced video 

conferencing, and human-computer interaction analysis 

through the use of hypermedia and non-linear annotations for 

recording and documentation [3, 4]. Deep learning has 

recently become a potent paradigm for challenging (machine 

learning) ML tasks including handwritten character 

recognition object/image recognition, etc. We are directed to 

adopt (deep learning) DL algorithms because they are 

excellent at extracting the relevant details from images for 

categorization.  

The earlier methods fit the deep figure using a flexible hand 

model, which is computationally difficult but allows the 

intermediate frame to be used as the initial value for the 

subsequent frame. However, multiple frames should be taken 

into account at once because the inaccuracy will increase over 

time. Due to the variety of appearances generated by posture 

changes and movements, including occlusion, illumination, 

and other factors, estimating hand position directions is 

particularly challenging in reality. To deal with these problems, 

multiple approaches have been developed over time. The hand 

gestures continue to differ from our typical daily tasks. For 

computer vision researchers, automatic pose estimation. It can 

be challenging to identify spatial patterns of specific hand 

postures in movies. The advent of diverse algorithms that may 

explore through video clips for certain human emotions of 

yearning was spurred by an increase in internet streaming 

video over the previous ten years. The difficulty still resides in 

extracting a hand posture, recognizing it, and annotating it 

with a trained CNN feature map. The study's objective is to 

eliminates hand posture feature maps from both online and 

offline sources that are seen in traditional Indian dance. 

Constraints include things like video quality, frame rate, 

background lighting, scene change speed, and blurring. Since 

many users upload videos of poor quality, which highlight all 

of the restrictions as a barrier to the computerization of video 

categorization and segmentation, the evaluation of online 

content continues to be a complex procedure. Hence, it is 

difficult to easily extract human hand dance characteristics 

from the dance video chain online due to a number of 

constraints. Automatic dance movement extraction still 

requires complex poses and actions to be done at various 

speeds while coordinating music and vocal sounds, making it 

difficult to comprehend. The hand mudra prediction paradigm 

uses an approach developed by dance professionals, which 

starts with the dancer's hand pose sequence, combines joint 

replacement sub-sequences with dance motions, and then 

predicts the hand gesture from the sequences of joint 

"movements". The following list of factors illustrates the 

significance of CNN-LSTM: As the size of the picture datasets 

grows, this demands a deeper and larger CNN-LSTM. Also, 

there hasn't been much research done on deep CNN-LSTM 

classification of hand mudras.  It is appropriate for providing 

answers to difficult situations involving a large amount of data. 

The key contribution of the proposed method is follows: 

·The first step was to collect several classical dancing 

videos from YouTube, after which the proper pre-processing 

procedures, such resizing and scaling were used. 

·To evaluate the hand gesture using cosine similarity to 

compare it to student and dancer poses, the Tensorflow 

EfficientNet-Unet Architecture was developed. 

· In the feature extraction segment, EfficientNet-UNet 

salient features are simultaneously extracted. 

·Finally, CNN-LSTM is utilized to estimate the hand 

gestures. 

·Use any real-time dancing video to detect the position 

and classify the hand mudras using the suggested approach. 

·Comparing the outcomes of the proposed technique with 

results obtained using the most recent technology. 

The other sections of the study are organized as follows: 
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Segment 2 examines some current research investigations, 

Segment 3 illustrates the proposed technique and 

methodologies, Segment 4 displays the results of the 

experiment and discussion, and Segment 5 come to an end 

with the conclusion and future research. 

 

 

2. LITERATURE SURVEY  

 

A key zone in the discipline of computer vision during the 

last two decades has been the detection of human action from 

video. This topic has already been studied by other researchers. 

However, a dynamical key point extractor is required for the 

detection of human action. For difficult applications of 

machine learning (ML), like image/object identification, deep 

learning has recently shown to be an effective strategy [5, 6]. 

The living legacy of Indian classical dance is being preserved 

through a multimedia DB retrieval system, according to the 

study [7]. They do not, however, discern body stances or hand 

gestures to explicationally comprehend the specific dance, in 

contrast to our study. A sparse representation based dictionary 

learning strategy is suggested in the study [8] for the 

classifying ICD. Folk dance classification is attempted in teh 

study [9]. A dataset from Greek traditional dance was used to 

test the bag of words strategy for activity recognition [10]. 

Only a few significant papers address the problem of body 

posture recognition in ICD, however there is a significant 

amount of study on general pose recognition of individuals. 

The initial 2D pose estimation methods for images and movies 

can be found in the study [11, 12]. Based on the framework for 

pictorial structures, Andriluka et al. [13] provide a general 

method for human detection and pose estimation. According 

to the study [14], visual words should be learned adversarially 

for 3D human pose assessment. A approach for detecting and 

identifying the hand region was proposed by Pisharady et al. 

[15] and uses a Bayesian model of visual attention to produce 

a outstanding map. A recent attempt at hand gesture detection 

using CNNs can be found in the study [15]. We categorize 

seven different grip types using a straightforward five-layer 

CNN as suggested in the study [16]. Nevertheless, neither [15] 

nor dropout [17] utilize transfer learning. With no prior 

knowledge of the hand istance, the method [18] 

simultaneously manages initialization, tracking, and recovery 

of hand motion. Hariharan et al. [19] suggest a scale, 

translation, and rotation-invariant method for identifying 

different single hand movements made by a dancer. The issue 

of measuring the dancer's position, however, is not addressed 

in the study. By using an image dataset of hand mudras from 

several traditional dance formats, the authors [20] provide 

another initiative grant specifically for recognizing traditional 

dances and various hasta mudras. The histogram of oriented 

(HOG) attributes are used as the input for the Support Vector 

Machine (SVM) classifier. Moreover, transfer learning using 

various CNN frameworks is best used to address various 

categorization issue statements. Using gathered videos and 

photographs, the authors [21] created a bottom-up method for 

multi-person posture detection, simultaneously refining part 

affinity fields and part detection during the training stage. The 

Mobilenet architecture is used to build this model, which 

makes run-time analysis easier.  

A procedure for calculating 3Dimensional hand poses was 

proposed by Malavath et al. [22]. By using this method, the 

uncertainty brought on by insufficient depth information in 

images is removed. This network offers a 3D hand pose 

estimate by identifying critical hand points. Bandaragoda et al. 

[23] put out an event-driven computer behavioural model to 

comprehend various traffic-related behaviours. The suggested 

approach [24] uses travel trajectory analysis and traffic flow 

profiling to identify various commuter behavioural profiles as 

well as fluctuating and regular patterns. for multi-scene video 

processing makes use of the expanding self-organization 

map's divisive hierarchical clustering capacity utilizing a two-

step top-down hierarchical technique. A U-shaped fully 

convolutional network design was presented by Olaf 

Ronneberger et al. [25] in which features maps from various 

encoder layers and decoder layers were upsampled and 

concatenated. By comparing the best approaches, it was 

determined that the little variations in posture for a given 

dance style, which are trivially described by hand gestures 

( hand mudras), make the competition over hand pose 

evaluation in Indian classical dance styles more obvious. 

Moreover, the background noise present in the input frames 

hinders the process of feature extraction and classification. 

The proposed study's focuses on the outcomes of the 

collaborative e-Dance project, which investigates the fusion of 

choreography, modern video conferencing, and human-

computer interaction study. The fact that paradigm-based 

techniques are expensive in terms of computational expenses 

is another important problem. The proposed TensorFlow 

EfficientNet-Unet based hand position evaluation with (CNN-

LSTM)-based classification is used as a result to surpass this. 

 

 

3. METHODOLOGY 

 

The recommended (CNN-LSTM) Convolutional Neural 

Network-Long-Short Term Memory Network for 

classification of hand gesture assessment is shown in detail in 

Figure 3. Images of Bharatanatyam dance performed by a 

teacher and student are used from YouTube videos for the 

given shloka (poem). Initially image should be pre-processed 

using the conventional scalar methodology after the input 

dataset has first been learned. Pre-processing involves 

rescaling the image, first extracting the noise, and then 

clearing the image. By constructing the Tensorflow 

EfficientNet-UNet framework, this noise-extracted image is 

given to the hand mudra pose evaluation mode with a feature 

extraction segment. In contrast, key points are extracted using 

a similarity index methodology. Finally, using the 

classification system's training dataset, we trained the CNN-

LSTM framework. The proposed system's training accuracy 

and loss are noted for each epoch. A few evaluation criteria, 

including the, accuracy, confusion matrix, recall, precision, f1-

score, AUC curve, and of the suggested system, are used to 

determine the execution. 

 

3.1 Dataset explanation 

 

The mudra estimation approach uses a number of 

preprocessing procedures, such as data preprocessing, data 

augmentation, feature extraction, estimation, and 

classification modules, to achieve robustness. The acquired 

dataset's raw data is first preprocessed. The exact position of 

the bharatanatyam images are cut from the ground truth image 

and entered into the pose estimate network. Each input 

preprocessed image is then enhanced. The data is increased for 

each input image by rotating the original image at various 

angles.252 YouTube videos of the Bharatanatyam dance form 
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has been used to make up the dataset used in our research. This 

was done to ensure that the dance films would still be visible 

and effective with little background activity. There are a total 

of 25 video clips with a 400A-U350 maximum resolution and 

a 25 s maximum runtime. With the YouTube dance class video 

as a reference, we enhanced the content. Our device also 

chopped video segments into five to six second chunks of the 

casing while dispensing information, yielding a maximum of 

150 frames. The ratio of 7:3 was selected as the train to 

examine for assessment. The result dataset presented 

numerous challenges, including variations in lighting, dancers 

shading on the dais, uniform dance positions, etc. This dataset 

is made more difficult by the fragmentary hand portions 

missing in a few sequences and the less accurate skeletal 

cooperative synchronizing. 252 videos altogether were 

considered for the experiment. 

 

 
 

Figure 3. Flow chart of proposed system 
 

3.2 Information pre-processing using common scalar 

techniques 

 

Contemplate that for every input image 1<I<I, an input 

image of specific format {wi, yi, Xi} is not-ed in which ‘yi’ 

denotes the scalar outcome, wi denotes the scalar covariates 

vectorization, and Xi de-notes the image predictor calculated 

upon a network. The definition of the scalar-on-image 

degrada-tion paradigm is: 

 

𝑣𝑖 = 𝑤𝑖𝑇𝛺 + 𝑋𝐼 𝛽 +  𝜇𝑖 (1) 

 

where, Ω denotes the fixed vector, and β denotes a collection 

regarding regression coefficients that are delineated using the 

same trellis as an image forecaster, Xi.β symbolizes the dot 

product of β and Xi. We seek to evaluate the coefficient input 

image β taking into account that:  

a) Indicator is scarce and divided into spatially continuous 

zones. 

b) In non-zero regions, the indication remains smooth. 

As a result, we also gave a picture of the dormant binary 

indicator, which categorizes position of images as neither 

predict nor non-predict. By considering l and l in terms of 

notation as the image position of the images l and l, 

respectively, and l and l as the images l and l having the l th 

position extracted. Con-sider l as the locale of all image 

positions that share a face with position l but have no corner; l 

can comprise up to 4 components on a typical lattice in 

dimensions. XTl=[X1, l, ..., XI, l] is obtained by considering 

Xl as a length I vector of picture values at position l beyond 

subjects. Similarly, think of X(l) as the collection of photos 

with the lth place removed. We assume that images have been 

deteriorated if the mean of each XTl stays 0. By taking into 

account X as the length I vector, we can see that it consists of 

the dot product of each image predictor Xi along with: (X) T 

=[X1, ..., XI]. Finally, we define ‘w’ as the matrix with 

equivalent rows to wiT. With the noise and redundancy 

removed, the in-formation is now available for feature 

extraction. 

 

3.3 Similarity index methodology for feature extraction 

 

The methodology of similarity index for feature extraction 

is a technique employed to evaluate the similarity or 

dissimilarity between data points or samples within a dataset. 

Its objective is to capture the fundamental characteristics or 

features of the data by quantifying the associations among 

individual samples. Depending on the characteristics of the 

data and the specific problem at hand, several similarity index 

measures can be utilized for feature extraction. Cosine 

Similarity method has been used in this proposed approach. 

Cosine similarity is a metric that measures the cosine of the 

angle between two non-zero vectors. It is commonly applied 

in the comparison of documents or text data. Unlike magnitude, 

cosine similarity primarily focuses on the orientation of the 

vectors. Cosine similarity is predominantly employed in 

vector comparisons, making it less directly applicable to 

images. However, there are strategies to leverage cosine 

similarity in image analysis by converting images into vector 

representations. 

A popular approach involves utilizing image embedding’s 

or deep learning models like convolutional neural networks 

(CNNs) to extract significant image features. CNNs excel at 

capturing hierarchical representations of image content, 

producing vector embedding’s that can be compared using 

cosine similarity.Here is a general procedure for applying 

cosine similarity to images: 

(1) Image preprocessing: Begin by resizing the images to a 

consistent size and implementing any required preprocessing 

steps, such as normalization or cropping. 

(2) Extracting image features: Utilize a pre-trained CNN 

(EffiecientNet-UNet in this study) model to extract features 

from the images. The CNN will convert each image into a 

high-dimensional vector representation. 

(3) Compute cosine similarity: Calculate the cosine 

similarity between the vector representations of the images 

using the previously mentioned formula. 

By comparing the cosine similarities among various image 

vectors, tasks such as image retrieval, image clustering, or 

content-based image recommendation can be performed. 

Cosine similarity aids in identifying similar image content 

based on their vector representations, facilitating effective 

image analysis and retrieval. 
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4. TECHNICAL APPROACH 

 

The architecture of encoder and decoder will be briefly 

discussed in this part, including EfficientNet, which serves as 

the encoder's feature extractor while UNet, serves as the 

decoder. 

 

4.1 Encoder-Decoder building design 

 

For semantic segmentation, Figure 4 shows a simple 

encoder-decoder network. 

 

 
 

Figure 4. Framework of Encoder-Decoder type semantic 

segmentation framework based on CNN 

 

In the encoder-decoder module, the initial step involves 

using a CNN-based encoder to extract image features. In order 

to capture intricate details within the image, the module 

gradually decreases the image size while also reducing the 

resolution of the feature map. Modern CNN’s like MobileNet, 

ResNet, Inception and ResNetV2 etc. are used for this. To 

produce the final feature map, these CNN architectures often 

gradually decrease the resolution of the image. Generating a 

segmentation map for a larger original input image from a 

smaller feature map is a difficult task. To overcome this 

challenge, the decoder module is designed with several layers 

that can up sample the encoder's feature map and retrieve 

spatial information. 

 

4.2 Tensorflow EfficientNet-UNet framework 

 

 
 

Figure 5. The EfficientNetB7 architecture employs MBConv 

as its fundamental building blocks. MBConv, short for 

mobile inverted bottleneck convolution, is used to create each 

block of the network. The filter size and activation function 

used in each MBConvX block are shown, where X can be 

either 1 or 6, representing the standard ReLU and ReLU6 

activation functions, correspondingly 

 

CNN architectures are developed based on the available 

resources and scaled up to enhance their performance when 

resources increase. For instance, ResNet18 can be upgraded to 

ResNet101 by adding more layers. Traditionally, models were 

scaled by increasing the CNN's width, depth, or input image 

resolution. However, this practice was arbitrary, involved 

time-consuming manual tuning, and occasionally resulted in 

suboptimal performance. In their research, Tan et al. [26] 

introduced a new approach to scaling neural networks, which 

involves uniformly increasing the network depth, width, and 

resolution for better performance using a set of fixed scaling 

factors. They first designed a baseline architecture called 

EfficientNetB0, which was then scaled up using the compound 

scaling method to create a family of EfficientNet. This 

approach led to the development of eight EfficientNet variants, 

ranging from EfficientNetB0 to EfficientNetB7. The 

systematic scaling of the network improves its performance by 

balancing all the compound coefficients of the architecture 

width, depth, and image resolution. 

 

 
 

Figure 6. MBConv: Elemental EfficientNet building block 
 

 
 

Figure 7. Framework for semantic segmentation using the 

suggested Eff-UNet and EfficientNetB7 architecture. Figure 

5 displays the specifics of Block1-7. To create the 

segmentation map, a series of upconvolution and 

concatenation layers make up the decoder 

 

The top model, Efficient- NetB7, performs better on 

ImageNet in terms of accuracy than previous state-of-the-art 

CNNs [26] and is also 8.4 smaller and 6.1 better and faster. 

Figure 5 depicts the network design of EfficientNetB7. The 

mobile inverted bottleneck convolution (MBConv) [27] with 

squeeze and excitation optimization is the fundamental 

component of the EfficientNet design. Figure 6 depicts the 

concept of MBConv. The total number of these MBConv 

blocks varies depending on EfficientNet network family, 

EfficientNetB7 exhibits an in-crease in depth, model size, 

width, resolution compared to EfficientNetB0. Moreover, 

there is an improvement in accuracy along with these 

advancements [26]. According to the size of the filter, striding, 

and total number of channels, it can be separated into seven 

blocks. In our study, we employed Efficient- NetB5 & 
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EfficientNetB7 as encoders with UNet as the decoder, and 

EfficientNetB7 had the best performance. 

The UNet is a convolutional neural network that has a 

symmetric U shape and was originally designed for bio-

medical image segmentation. It has two pathways - an encoder 

and a decoder. The encoder, which is made up of a series of 

convolutional, activation, and pooling layers, is responsible 

for extracting context from the input image. The decoder or 

expansion pathway in the UNet gradually increases the size of 

the output obtained from the encoder, which is initially smaller 

than the input. This is achieved through the use of transposed 

convolutions that enable precise localization. As part of the 

expansion pathway, the feature maps from the contracting 

pathway are concatenated with high-level features and spatial 

information, and these are then fed through a series of up 

convolutions. When dealing with intricate scenes that involve 

various objects and their respective placements, it is necessary 

to combine the intermediate low-level feature maps from 

Efficient-Net with the intermediate high-level feature maps 

from the UNet decoder. The reason for this is that the encoder's 

low-level feature maps contain precise spatial information that 

is particularly helpful in these circumstances. The up sampling 

component of the network has a large number of feature 

channels that allow for the transmission of context information 

to higher resolution layers. Unlike the traditional UNet where 

the expansion and contraction paths are almost symmetrical, 

in this case, the EfficientNet is proposed as an encoder for the 

contracting path. Instead of using the standard set of 

convolution layers, this approach is suggested to enhance the 

performance of the network. The decoder module of the 

proposed architecture has similarities with the original UNet. 

Specific details of the architecture are shown in Figure 7. Prior 

to processing, the images were resized from their original size 

of 320x227 to 320x224. Figure 5 provides information on the 

number of channels, levels, and resolution for each feature 

map, while Figure 6 illustrates the detailed block architecture 

of the encoder. To recreate the segmentation map with the 

same size as the input image, the feature map from the final 

logit of the encoder is bilinearly upsampled by a factor of two 

and then combined with the feature map from the encoder that 

has the same spatial resolution. Following this, 3x3 

convolution layers are added, and another upsampling by a 

factor of two is performed. This process is repeated until the 

segmentation map is recreated with the input image of same 

size. Unlike the original UNet, the proposed architecture is 

asymmetrical, with a shallower expansion path than the 

contraction path. When a powerful CNN encoder like 

EfficientNet is used, the overall performance of the method is 

improved. 

 

4.3 Extraction of hand keypoints 

 

For image point matching, the proposed Scale Invariant 

Feature Transformation approach (SIFT), which produces a 

reliable keypoint estimator. The features recovered from SIFT 

are constant to image scale and rotation and are shown to 

provide reliable matching over a wide range of affine 

distortion, variation in three-dimensional viewpoint, inclusion 

of noise, and lighting modification. To extract the Keypoints 

from the blob, use the Laplacian of Gaussian (LoG) with 

various. With the help of orientation and gradient magnitude 

across all key points, this estimator generates a vector 

containing the values of all the appearances in the orientation 

histogram. The height HN and width WN of the featured 

image are: 

 

𝑊𝑁 = 𝑊𝐵𝐵 × 0.5 + 50, 𝐻𝑁 = 𝐻𝐵𝐵 × 3.5 + 1 (2) 

 

In Eq. (2) HBB and WBB delineates sizes of specific 

object’s bounding box. The normalized image includes a 

frame of 1-pixel width to prevent local maxima from being 

extracted outside of the borders. Then, distance transform (DT) 

is used to create a grayscale image in which each backdrop 

pixel's concentration corresponds to its L1 expanse from the 

closest forefront pixel. The local maximum is then located on 

the DT image using a k x k square window. It generates linked 

components with comparable pixel intensities. Keypoints are 

then extracted as the focal point of the accumulation of 

connected items. Every DT picture pixel has a k X k square 

window, which is used to identify local maxima. Quantity of 

local maxima that are extracted is affected by criterion k. Less 

important keypoints are recognized as k grows larger. Since 

some of the keypoints in the excerpt may have been produced 

by noise and contour disturbances, they might not be entirely 

necessary. Key-points which maintains the riveted positions 

when local image deformation is applied stay more distinct 

than keypoints that shift while local image deformation is 

applied. Scale-space filtering is used in the phase as part of the 

key-point filtering technique [17]. This process produces a 

series of blurred images using a Gaussian filter, with the s 

function being represented by Eq (3). 

 

𝑔(𝑥, 𝑦, 𝛼) =
1

2𝜋𝛼2
𝑒−(𝑥+𝑦)2

/2𝛼 (3) 

 

where, 𝛼  stands for the scale-managing smoothing criteria, 

and x and y stand for X and y pixel synchronization. Then, 

Otsu's technique is used to binarize the filtered images. The 

method is used to create N images that are progressively more 

distorted, which are then used to extract key points. The use of 

a cosine similarity index is then used to determine similarity. 

The relevant rotating matrix models are created for the posture 

estimate based on the pitch angle, roll angle and yaw angle. 

The rotating benchmark Keypoints can remain near to the 

Keypoints with the indeterminate pose relative to the objective 

function. Together with the three rotation angles and the depth, 

additional considerations include scaling and shifting. To 

make the formula simpler, the Keypoints of the various stance 

images are taken to be the same. Hence, there are six unknown 

variables in the posture vector. The model is formulated as: 

 

𝑐(𝛼, 𝛽, 𝛾, 𝑧, 𝐶, 𝑡) = 𝑚𝑖𝑛{∑ ‖𝑞𝑖  𝐶. [𝑅(𝛼, 𝛽, 𝛾). 𝑝𝑖

𝑛

𝑖=1

+ 𝑡]|| 2} 

(4) 

 

In this context, 'qi' represents the coordinate data of the image, 

whereas 'pi' refers to the 3D coordinate point of the frontal key-

points of the joint. The variables 'α', 'β', and 'γ' correspond to 

the rotational angles, while 'z' pertains to the depth of the front. 

Additionally, 'C' represents the scaling factor, and 't' denotes 

the shifting factor. The rotations that are carried out by 

subsequent joints in relation to a given reference pose are what 

the hand pose configuration requirements are concerned with. 

Local coordinate systems are used to indicate rotations. As a 

result, the most obvious way to define similarity between two 

postures, P1 and P2, is to look at the total distance travelled by 

associated skeletal joints as a whole. 
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𝑑(𝑃1, 𝑃2)
= 𝑑𝑗𝑜𝑖𝑛𝑡

𝛴 (𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑃1(𝑗𝑜𝑖𝑛𝑡). 𝑃2(𝑗𝑜𝑖𝑛𝑡)) 
(5) 

 

As a result, the major challenge still lies in choosing the 

correct distance function rotation to handle the estimation of 

the difference between the two rotations. By definition, 

rotations are represented by the 3 Euler angles (α, β, γ ). Such 

details consist underlying rotations carried out around local 

coordinate system axes. Hence, any traditional vector space 

distance function could be used for cosine metrics. 

 

𝛥(𝛼1, 𝛼2) =  П − ‖ 𝛼1 − 𝛼2| −  П (6) 

 

Quaternions provide a diverse, effective, and succinct 

representation of rotations. These are developments related to 

complex numbers with a three-dimensional section: 

 

𝑄 = 𝑎 + 𝑖. 𝑏 + 𝑗. 𝑐 + 𝑘. 𝑑 (7) 

 

Calculations are performed for the imaginary vector 

sections (b, c, and d) and the quaternion's scalar section 

(a=cos(2)) in the scenario of rotation with an angle of along 

the axis, which is expressed by a unit length vector u. Another 

method would define its cosine as a nonlinear conversion of 

geodesic distance in place of the raw angle. 

 

𝑑cos𝑖𝑛𝑒(𝑞1, 𝑞2)  =  
1 − (𝑞1, 𝑞2)

2
 (8) 

 

The posture similarity of the hand progression between the 

student and the teacher is used to calculate the pose precision. 

 
S(p)

=  
1

Te(t) − Tt(s) + 1
∑ exp (−

fi(t) − f(t)

β
)

Ti

i=Tt(t)

 
(9) 

 

in which the ith frame's vectors fi t and f′ t, respectively, 

indicate the hand gesture characteristics of the student and 

tutor, and the symbol stands for a criterion that regulates the 

amount of deviations from the instructor's hand gesture. The 

total biased scores of timing and pose accuracy are used to 

define the dance series between the student and teacher as: 

 

S =
1

N
∑ 𝑆𝑗(𝑡)𝑆𝑗(𝑝)

N

i=1
 (10) 

 

where, N stands for the number of hand gesture sequences that 

a student will perform, and Sj(t)Sj(p) stands for the 

appropriateness of time and posture in the jth sequence. 

 

4.4 CNN-LSTM classification of hand mudras 

 

The CNN Long Short-Term Memory Network, sometimes 

known as CNN LSTM for short, is an LSTM architecture 

created especially for issues involving the sequence prediction 

of inputs having a spatial component, such as images or videos. 

Convolutional Neural Network (CNN) layers are used in the 

CNN LSTM architecture to extract features from input data, 

and LSTMs are used to assist sequence prediction. The 

classifier CNN-LSTM is trained using the retrieved features. 

The CNN and LSTM structures are incorporated in the CNN-

LSTM. The needed details have been learned in the classifier 

and the feature data has been taught in the CNN-LSTM deep 

learning structure, as shown in the architectural diagram in 

Figure 8. The Hybrid design The suggested methodology uses 

CNN-LSTM as both the classifier and the forecasting network 

structure. The benefit of the suggested methodology is that it 

addresses accuracy. CNN-LSTM has a higher accuracy value 

thanks to the hybrid structure's pose-estimated key locations. 

With CNN-LSTM, categorization is done after the key points 

have been extracted. 

First, the input representation with the essential points 

excised is convolved using convolutional level C-1 with 3x3 

kernal in addition to ReLU rectifier. Every feature vector 

produced by the layer has a constant size of 32 x 32. There are 

two more levels, C-2 and C-3, which are positioned 

successively. A pooling level named P-1 with a kernel 

dimension of 2x2 is shown after layer C-3. The output of P-1 

produces a 16 x16 kernel when the pooling layer uses a 2x2 

kernel. After the P-1 layer, the dense layer, which produces 

512 neurons, is displayed. The layer's output is used as the 

input layer for the LSTM. 

 
 

 
 

Figure 8. CNN-LSTM Architecture for mudra classification 

 

 
 

Figure 9. Building blocks of the CNN-LSTM classifier in the 

EfficientNet-UNet architecture 

 

We converted the data into a time sequence when the layer 

included a unidimensional vector. All TS information that we 
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produced, ranging from x1 to xs, includes an ID of dimension 

q, similar to c1 to cb, where s is b 432. After a drop-out of 25% 

of the information, a dense level with 54 neurons is located 

succeeding the LSTM level. The decision layer is then placed, 

as shown in Figure 9, to distinguish between the many styles 

of hand gestures focused on stance. The mathematical formula 

for the layer-l convolution procedure is shown as: 

 

𝐶𝑗 = 𝑓 𝑚𝑚𝑖𝐸𝑀
𝛴 𝑖 × 𝑘𝑗 + 𝑏𝑗 (11) 

 

The activation function is represented by f, the convolution 

kernel dimension is represented by F1, and Kj (j = 1, 2, F1) 

denotes the ConV bias, kernal of the j-th ConV kernel. One 

may create F1 feature maps using F1 convolution kernels. The 

layer l pooling operation is displayed as: 

 

Sj = βj down(cj) + bj (12) 

 

where, down(cj) stands for the subsampling technique, and bj 

stands for bias. j βj (j 1, 2, F1) denotes multiplicative bias of j-

th pooling. The CNN paradigm's loss function uses mean 

squared error with an L2 normal distribution as well as 

observed values and fitted CNN values at the appropriate time 

stamps (tk) for the input image I. M continues to be the number 

of training data to prevent overfitting, an L2 regularization 

constraint is used. The state of the cell, which contains the 

information to be remembered and passed to the following cell, 

is the more important component. The short-term states (ht) 

and long-term states (Ct) are divided into two categories. 

Finally, three control gates (forget, input, and output gates) are 

added to the state route to control and prepare the cell states. 

Determining how many data from the input image details 

X(t) and the previous output h (t — 1) should be excluded from 

the LSTM cell's first phase is still necessary. A sigmoid layer 

known as the "forget gate layer (ft)" reliably generates this 

preference. This evaluates the values of h(t 1) and X(t) for 

creating each cell's state C(t 1) values between 0 and 1, which 

denotes disregarding the value and 1, which denotes having it. 

How to handle data extrication from the previous long-term 

state C is demonstrated in Eq. (13). 

 

f(t) = σ(W𝑓[ℎ(𝑡 − 1), 𝑋(𝑡)] + 𝑏(𝑓)) (13) 

 

where, Wf and bf corresponds to weight matriX and bias in the 

case where stands for the sigmoid function. The current data 

that needs to be produced in the next state and given to the 

input gate for memorization in the cell state. There are two 

steps we should take to accomplish this: Initially, a "input gate 

later it" layer sigmoid. The values that need to be updated are 

determined by Eq. (14). 

 

I(t) = σ(Wi[h(t − 1), X(t)] + b(i)) (14) 

 

The creation of a vector of new values Ct for Eq. (15) that 

is to be considered in the state is thus the focus of a tangent 

hyperbolic layer. Afterwards, these elements are combined to 

create a state update. 

 

C(t) = tanh(Wc[h(t − 1)], X(t)] + b(c)) (15) 

 

where, Wc and Wi represent weight matrices, and b(i) and b(c) 

stand for the bias terms. The final outcome gate, or final phase, 

decides what data was last created at the conclusion of the cell. 

According to Eq. (16), the final outcome gate computation is 

based on the cell state, and Eq. (17) describes how to update 

the hidden state. 

 

O(t) = β(W0[h(t − 1), X(t)] + b(0)) (16) 

 

H(t) = O(t)tanh(C(t)) (17) 

 

Weight matriX and bias are represented in Eq. (16) by Wo 

and b(o). Block output is repeatedly connected to the input and 

all of the gates. The evaluation results are classified based on 

the probability index of the chosen class having characteristics 

in additional to the corresponding function by evaluating 

training data. 

 

Table 1. Accuracy of current and suggested techniques for 

various Epochs 

 
Epochs 15 25 35 45 65 

LRCN 71.4 73.4 73.4 75.2 77.42 

CONV3D 84.4 83.4 86.5 86.3 88.58 

MLP 73.4 73.4 77.3 82.3 84.56 

LSTM 71.3 74.4 76.3 77.4 77.32 

CNN-LSTM(Proposed) 96.6 97.3 98.1 98.4 98.03 

 

Table 2. Precision of current and suggested techniques for 

various Epochs 

 
Epochs 15 25 35 45 65 

LRCN 76.5 81.4 83.4 83.1 87.3 

CONV3D 76.2 77.3 80.5 82.4 85.3 

MLP 82.2 83.2 83.2 85.3 88.6 

LSTM 85.2 88.3 88.6 91.6 93.45 

CNN-LSTM(Proposed) 85.7 87.6 91.2 91.3 93.04 

 

Table 3. Recall of current and suggested techniques for 

various Epochs 

 
Epochs 15 25 35 45 65 

LRCN 68.4 74.8 72.4 75.5 77.6 

CONV3D 82.3 88.9 87.5 86.6 85.3 

MLP 81.3 83.2 84.3 86.5 86.54 

LSTM 88.3 91.4 92.3 94.4 93.5 

CNN-LSTM(Proposed) 93.4 93.3 97.2 98.2 97.24 

 

Table 4. AUC Scores of current and suggested techniques for 

various Epochs 
 

Epochs 15 25 35 45 65 

LRCN 77.4 81.4 83.4 83.2 85.5 

CONV3D 81.2 80.3 83.5 83.5 84.6 

MLP 73.2 75.4 78.2 80.3 82.46 

LSTM 73.3 74.6 77.1 72.3 77.32 

CNN-LSTM(Proposed) 94.7 95.3 96.2 97.3 98.72 

 

Table 5. F1-Score of current and suggested techniques for 

various Epochs 
 

Epochs 15 25 35 45 65 

LRCN 71.5 73.2 75.6 75.3 77.35 

CONV3D 82.3 83.5 84.5 86.2 88.45 

MLP 73.2 75.2 78.3 82.3 82.45 

LSTM 71.6 74.2 76.2 77.2 77.32 

CNN-LSTM(Proposed) 96.6 95.7 96.45 97.03 97.36 
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Table 6. Association between current and suggested 

approaches for analyzing classifiers 

 

Criteria LRCN CONV3D MLP LSTM 
CNN-LSTM 

(Proposed) 

Accuracy 92.6 84.6 83.3 92.4 97.53 

Precision 77.43 88.2 82.46 77.32 98.05 

Recall 77.6 85.5 85.56 93.3 97.48 
AUC 

Score 
85.5 84.6 88.6 84.3 98.13 

F1-Score 93.1 92.2 88.5 82.3 97.75 

 

Table 7. Association between current and proposed methods 

for training classifiers 

 

Measures LRCN CONV3D MLP LSTM 
CNN-LSTM 

(Proposed) 

Accuracy 85.4 84.2 87.6 92.42 93.02 

Precision 77.7 86.5 93.5 91.5 92.12 

Recall 82.5 86.4 94.3 81.7 93.77 
AUC 

Score 
87.6 73.6 88.3 82.4 95.45 

F1-Score 88.5 90.5 87.3 86.4 92.53 

 

 
 

Figure 10. (a) Accuracy graph (b) Loss graph 
 

 
 

Figure 11. Accuracy correlation between current and 

planned methods 
 

 
 

Figure 12. F1-score correlation between currently used and 

new methods 

 
 

Figure 13. Precision correlation between currently used and 

new methods 
 

 
 

Figure 14. AUC specificity between currently used and 

newly proposed approaches is correlated 
 

 
 

Figure 15. Recall correlation between currently used and 

new methods 
 

 

5. RESULTS AND DISCUSSION 

 

The suggested technique was put into practise on a 

computer running Windows 10 using Python 3.6. The desktop 

computer was equipped with a 3.60 GHz Intel® Core-i7-

7700[53] processor, 16 GB of RAM, and an 8 GB NVIDIA 

GeForce GTX 1070 graphics processing unit (GPU). 

 

5.1 Performance analysis 

 

There are total 252 YouTube videos of the Bharatanatyam 

dance form has been used to make up the dataset used in our 

research. There are a total of 25 video clips with a 400A-U350 

maximum resolution and a 25 s maximum runtime. With the 

YouTube dance class video as a reference, we enhanced the 
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content. Our device also chopped video segments into five to 

six second chunks of the casing while dispensing information, 

yielding a maximum of 150 frames. The ratio of 7:3 was 

selected as the train to examine for assessment. The result 

dataset presented numerous challenges, including variations in 

lighting, dancers' shading on the dais, uniform dance positions, 

etc. This dataset is made more difficult by the fragmentary 

hand portions missing in a few sequences and the less accurate 

skeletal cooperative synchronizing. 252 videos altogether 

were considered for the experiment. 

Using Python software, the experimental results are 

analyzed based on various evaluation metrics, including the 

f1-score, accuracy, precision, recall, and AUC curve. The 

assessment is performed for four distinct techniques, namely 

Convolutional LSTM (LRCN), Multilayer Perceptron (MLP), 

LSTM, and CONV3D, in conjunction with the proposed 

CNN-LSTM model. The training process for Pose estimation, 

using the complete set of feature data, was carried out over a 

period of 65 epochs with batch size 4. 

·Accuracy: The percentage regarding correctly classified 

samples during categorization is shown here. 

 

𝐴𝑐𝑢𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100 

 

· Precision: This determines what proportion of 

information sent to the network contains intrusions. It is used 

to calculate the precision of the classifier.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

·Recall: It gives the proportion of correctly anticipated 

positive Real Positives, and it is defined as 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

·F1-Score: This F1-Score displays the mean recall and 

accuracy values. Recall is still the instance-based 

determination of the keyfeature known as faulty or non-faulty, 

whereas precision is still the prediction of accuracy. 

 

𝑓1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

The accuracy of training and testing, the loss of training and 

testing, and 65 epochs are shown in Figures. 10(a) and (b). The 

proposed CNN-LSTM (proposed) technique was examined 

using different epochs, and the accuracy has been computed 

for the emerging and proposed methods. The loss gradually 

dropped as the number of epochs rose, demonstrating the 

significance of the proposed technique. The Tables 1 through 

5 list the performance measures for accuracy, precision, recall, 

F1-Score, and AUC. The graph from Tables 6, 7 shows the 

association between the existing and suggested strategies, does 

the same. Thanks to EfficientNet-UNet and heavily processed 

similarity index to remove the blob at the Key points' edges, 

the suggested solutions are shown to be very well balanced as 

the number of epochs increases. 

The accuracy of the suggested technique CNN-LSTM 

(proffered) is 85.7%, 87.6%, 91.2%, 91.3%, and 93.04% at 

different epochs level at 15, 25, 35, 45, and 65. It has been 

compared with the emerging techniques LRCN, CONV3D, 

MLP, and LSTM, and the results have been visually plotted in 

Figure 11. Also, it has been noted that the suggested 

procedures provide a greater level of accuracy, 93.04% at the 

65 Epoch level.  

The F1- Score for the proposed technique CNN-LSTM 

(proffered) is 96.6%, 95.7%, 96.45%, 97.03%, and 97.36% for 

different Epoch levels of 10, 25, 35, 45, and 65. It has been 

compared with the existing techniques CONV3D, LRCN, 

LSTM, and MLP techniques in the graph shown in Figure 12. 

The F1- Score for the suggested method at the 65 epochs was 

found to be 97.36 %. 

The precision of the proposed CNN-LSTM approach 

(proffered) is 96.6%, 97.3%, 98.1%, 98.4%, and 98.03% at 

different epoch levels at 15, 25, 35, 45, and 65. It has been 

compared to the existing CONV3D, LRCN, LSTM, and MLP 

techniques, and the results are shown graphically in Figure 13. 

At 65 epochs, it has been determined that the proposed 

methodology delivers a 98.03%. For different Epochs levels 

of 15, 25, 35, 45, and 65, the proposed technique. 

The proposed technique CNN-LSTM (proffered) achieves 

94.7%, 95.3%, 96.2%, 97.3%, and 98.72% AUC Score at 

various Epochs levels of 15, 25, 35, 45, and 65. It has been 

compared with the current techniques CONV3D, LRCN, 

LSTM, and MLP techniques in the graph shown in Figure14. 

The proposed method was found to have a 98.72% AUC at the 

65 epochs. 

CNN-LSTM (proposed) achieves 93.4%, 93.3%, 97.2%, 

98.2%, and 97.24% recall. It has been contrasted with the 

existing techniques CONV3D, LRCN, LSTM, and MLP in the 

graph shown in Figure 15. At the 65 epochs, the proposed 

method was determined to have a 97.24% accuracy.  

 

 
 

Figure 16. Examination of overall performance for testing 

classifiers 
 

 
 

Figure 17. Analysis of the overall effectiveness of the 

suggested and used strategies 
 

The overall collation of the proposed CNN-LSTM 

technique with the current ones is depicted in Figure 15, and it 

698



is clear that the suggested technique outperforms the existing 

ones in terms of highest classified output. To construct a 

stacked array for each video, we selected 48 frames at random 

from each movie and fed them into the Tensor flow 

EfficientNet-UNet pre-trained paradigm. The input 

dimensions of the model are the batch, feature dimensions (32, 

48, 2048) and specimen, we sent the CNN-LSTM output and 

two completely integrated layers to the softmax layer for 

evaluation. The CNN-LSTM architecture yields superior 

outcomes when compared to the other assessed deep learning 

frameworks. It is clear that the suggested approaches 

outperform the present ones for the highest classified output. 

According to the highest Classifier Performance Metrics, the 

new techniques exceed the current way of pose estimation, as 

is evident visually in the aforementioned Figure 16. Results 

from the Tensorflow EfficientNet-UNet joined using a 

similarity index were slightly more refined than those 

combined using a hand pose signature. Figure 17 depicts an 

overall comparison of the proposed CNN-LSTM processes 

with the Established procedures. Our system distinguishes the 

movements of hand across a number of frames focused on its 

previous hand pose sequence and later predicts the hand 

gesture out of the action sequence. 

(a) 

(b) 

Figure 18. Similarity checking between student and dancer 

to ensure right dance (a) Garuda mudra Similarity index (b) 

Matsya mudra similarity index 

To get normalized expanse to the rest of an anchor joint, we 

chose mutual 7 as an orienting point. In Euclidean expanse 

norm, distance is used as the distance metric. In order to depict 

the hand gesture, we also incorporated the angles among 

important anchor joints. Figures 18(a) & (b) shows the method 

of comparing similarity between hand gestures, and is 

represented by an intensity value. When a learner tries to 

imitate a dance teacher, this result demonstrates an instant 

dance analysis and a dance representation of each a hand 

movement. Prior to being trained, the image dataset undergoes 

a pre-processing phase where a variety of image manipulation 

methods such as rescaling, thresholding, and scaling are 

utilized to enhance the dataset's suitability for precise fitting 

by the neural network. 

Semantic understanding of a shloka using hand gestures 

We selected a YouTube video to show how it is possible to 

interpret the dancer's hand gestures in order to understand the 

meaning of the performed dance performance. The Guru 

Stuti,a crucial shloka (short poem/invocation) in Hindu texts, 

is performed here by a dancer:  

Gurur Brahma Gurur Vishnum Gurur Devo 

Maheshwaraha Guru Sakshat Parabrahma Tasmai Shree 

Gurave Namaha. 

I view you as Brahma, teacher. Teacher. You are Vishnu to 

me. I regard you as Maheshwaraha, Guru (Shiva). You rule 

over all lords. I bowed before you. Using our previously 

trained SVM or CNN classifier, we can break down the 

YouTube video of the dancer reciting this shloka into 

individual frames and identify the hand motions. As seen in 

Figure 19(a), the dancer's right hand is making the Hamsasye 

gesture , which is associated with the phrase "Gurur Brahma" 

and has been successfully detected by both of our Cnn 

architectures. The double hand motions made by the dancer in 

Figure 19(b) and Figure 19(c) are accurately classified by our 

proposed model as Shankha and Chakra, respectively. 

(a) (b) (c) (d)

(e) (f)  (g)  (h) 

Figure 19. Identification of hand gestures to comprehend the 

meaning of a shloka (Guru Stuti) 

The phrases Gurur Vishnum in the Shloka are referenced by 

these two hand motions. Chakra denotes a disc or a wheel in 

Sanskrit. The Sudarshan Chakra of Lord Vishnu is represented 

by this two-handed gesture. In Figure 19(d), the dancer is 

depicted making a single hand motion for the word "Devo" 

from the Shloka by Pataka. The trained model can distinguish 

the left hand motion, but due to a wide range in viewing angles, 

our model can identify the right hand gesture. Figure 19(e) 

depicts the word Maheshwaraha being spoken while making 

the Shivalinga sign with two hands. Both the SVM trained 

models and CNN are capable of correctly identifying this 

gesture. In Figure 19(f), the phrases Gurur Sakshat are shown 

as single-handed Pataka movements in each hand. By utilizing 

her left hand, the performer made this move, which the 

suggested model was able to recognize. The dancer is depicted 

in Figure 19(g) performing the word Parabrahma, which 

means "salutation to the Almighty”. Our model can recognize 

Anjali's double hand gesture in Figure 19(h). The final 

699



salutation to the teacher, Guruve Namahe, is indicated by this 

motion. 

6. CONCLUSIONS

Previous approaches involved fitting a flexible hand model 

to the deep figure, which poses computational challenges. 

Nonetheless, this approach enables the intermediate frame to 

serve as the initial value for subsequent frames. However, 

considering multiple frames simultaneously becomes 

necessary to prevent increasing inaccuracies over time. Real-

world challenges, such as posture variations, occlusion, 

illumination changes, and other factors, make hand position 

direction estimation particularly difficult. Consequently, 

numerous techniques have been developed over time to 

address these issues. This study presents a framework for 

classifying hasta mudras in the Bharatanatyam dancing style. 

In our Convolution Neural Network - Long Short Term 

Memory (CNN-LSTM) deep knowledge architecture for 

Indian Classical Dancing (ICD) classification, we added a new 

hand pose signature. We evaluated dancing performances by 

estimating the positions of human hands. In this architecture, 

hand poses are evaluated using information and information 

pruning, while pupil dance timing and correctness are 

evaluated using a dance tutor application. As a result, several 

pre-processing stages were carried out, including image 

processing, to aid in the feature extraction process. As a result, 

it is noted that throughout the examination process, the 

proposed CNN-LSTM achieves 93.04% accuracy, 98.03% 

precision, 97.24% recall, 98.72% AUC score, and 97.36% f1-

score. This hand position estimation network was constructed 

using a EfficientNet-UNet architecture, which lowers the 

complexity of the runtime. Because it is a lightweight network, 

it can also be operated by CPUs. This technology is suggested 

for use in a number of applications, including human computer 

interaction systems, digital dance learning platforms, hand 

activity identification in videos, and game analysis. By 

removing occlusion issues at the pre-processing stage, the 

work will be expanded in the future to increase the hand 

posture estimation and classification accuracy. 
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