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DNA Microarray technology allows simultaneous analysis of gene expression levels, 

making it useful in cancer classification. However, analyzing Microarray data is 

challenging due to the large number of genes and their sparsity. Feature selection has 

emerged as an effective method to overcome these challenges. This research aims to study 

the impact of three well-known feature selection algorithms (ReliefF, Chi Square, and 

ANOVA) in enhancing the accuracy of gene expression profile classification. A three-stage 

approach was employed: data preprocessing, feature selection, and feature classification. 

The focus is on selecting relevant features to accurately represent the problem under study. 

Four classifiers, i.e., SVM, GNB, LDA, and KNN, were evaluated using the 

aforementioned feature selection algorithms.The proposed methodology was tested on 10 

publicly available gene expression datasets. Using all genes, the SVM classifier showed the 

best accuracy and F1 scores, followed by the LDA classifier. When applying the ReliefF 

feature selection algorithm, the SVM classifier performed best with a 5% dataset ratio. 

Moreover, the ANOVA feature selection algorithm yielded optimal results with the SVM 

classifier at dataset ratios of 3%, 4%, and 5%. Lastly, the Chi-square feature selection 

consistently produced the best results with both SVM and GNB classifiers for all dataset 

ratios. The study underscores the significance of feature selection for improving gene 

expression profile classification accuracy. The findings of this research offer promising 

insights into the analysis of microarray data, which can be instrumental in enhancing the 

accuracy of cancer classification. 

Keywords: 

feature selection, gene expression, cancer 

classification, ReliefF, Chi Square, ANOVA 

1. INTRODUCTION

DNA microarrays are powerful tools used in the field of 

genomics to study gene expression levels. They contain a wide 

range of genes, providing valuable information for disease 

detection and tumor classification. However, the curse of 

dimensionality makes machine learning methods unsuitable 

for analyzing microarray data [1].  

The curse of dimensionality refers to the phenomenon 

where the performance of machine learning algorithms 

deteriorates as the number of features (dimensions) increases. 

In microarray data, each gene represents a feature, and with 

thousands of genes in a typical microarray, the dimensionality 

becomes extremely high. This high-dimensional space poses 

difficulties for accurate and efficient analysis, as traditional 

machine learning algorithms struggle to effectively handle 

such large feature spaces [1, 2]. 

Furthermore, microarray datasets are often characterized by 

sparsity, which means that only a small subset of genes 

exhibits significant changes in expression levels that are 

relevant to the task at hand, such as disease classification. 

Many studies have shown that the majority of features in 

microarray data do not contribute meaningfully to the 

prediction of labels, making their inclusion in the analysis 

inefficient and potentially detrimental to the performance of 

machine learning models [3]. 

Besides, the high dimensionality of microarray data requires 

substantial computational resources and time for processing. 

Performing computations in a high-dimensional space is 

computationally expensive and can lead to increased model 

training times and decreased efficiency. To address these 

challenges, it is crucial to reduce the dimensionality of 

microarray data and undertake data preprocessing techniques 

before applying classification algorithms. Dimensionality 

reduction techniques, such as feature\gene selection, can help 

identify the most informative genes and discard irrelevant or 

redundant ones. By reducing the feature space, the curse of 

dimensionality can be mitigated, enabling more effective 

analysis and improved performance of machine learning 

models on microarray data [2, 4]. 

Gene selection is the procedure of picking out a group of 

useful genes from a larger pool of candidates, which selects 

informative and relevant genes. This collection of genes has 

allowed scientists to learn a great deal about the genetics of the 

illness and the underlying processes. Additionally, this method 

can enhance the efficacy of cancer classification while 

reducing computing expenses [5, 6]. 

Recently, a lot of works have been done on gene selection 

methods [7]. These methods can be broadly classified as filter, 

wrapper, and embedded as shown in Figure 1 [8].  

Without taking into account any learning algorithms, filter 

methods primarily rely on statistical measures to evaluate the 

importance of each gene in the training data. A certain number 

of genes with the highest statistical scores are chosen using 
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this method of gene selection. Since these methods don't rely 

on a specific classifier, they may process data quickly. 

However, the rankings of important genes by each method are 

likely to be different, resulting that they may not be as 

trustworthy as other methods. So, this means that insignificant 

genes may be picked over essential ones [9]. There are many 

common filtering techniques such as Symmetric Uncertainty 

(SU), Chi-Squared Attribute Evaluator (Chi), Information 

Gain (IG), ReliefF, t-statistic, signal-to-noise ratio, and Gain 

Ratio Attribute Evaluator. It is possible to further categorize 

filter strategies as either univariate or multivariate approaches. 

Gene dependencies are taken into account by the latter but not 

the former [10]. 

Figure 1. Featured selection methods [8] 

Wrapper methods, in contrast to filters, evaluate the quality 

of the chosen genes by employing learning algorithms to 

provide the most accurate outcome for classification. These 

methods have a high rate of accuracy, but they are 

computationally costly and time-consuming, especially when 

the provided data comprises thousands of genes [11]. Some 

examples of such wrapper methods are Particle Swarm 

Optimization (PSO) [12], Simulated Annealing (SA) [13], and 

Genetic Algorithm (GA) [14]. On the other hand, embedded 

gene selection methods, integrate the gene-selection procedure 

within the learning Algorithm. This method calculates the 

importance of each gene while building the classifier. These 

methods have the potential to serve as both a classifier and a 

gene selector, but they will be quite computationally intensive 

when the number of genes is huge. Many embedded 

techniques are presented in the literature for solving multiclass 

problems such as, multi-task lasso and random forest feature 

selection [11, 15]. 

DNA microarrays can store the expression of up to 25,000 

genes simultaneously [16], presenting a new challenge of 

research for gene classification. These features may have a lot 

of redundancy, and that not all of them are crucial to the 

classification process, especially knowing that the accuracy 

can affected negatively by the redundant features. Hence, the 

primary goal behind this work is to conduct an investigative 

study to compare the effectiveness of the three main feature 

selection methods. By doing so, we aim to demonstrate the 

importance of selecting relevant features that adequately 

represent the entire dataset. Ultimately, this endeavor is 

expected to improve the accuracy of cancer classification, a 

significant aspect in the field of cancer research and medical 

diagnostics. We will ensure that the research questions driving 

our study are clearly articulated. By comparing these three 

feature selection methods, we seek to answer questions such 

as: Which method yields the most accurate and representative 

feature subset for cancer classification using gene expression 

microarray data? How do these methods perform in terms of 

selecting features that contribute significantly to accurate 

predictions? 

The rest of this paper is organized as follows. In section 2, 

the fundamental concepts of Microarray technology as well as 

listing the existing research methods for using genes in cancer 

classification. Section 3 describes the methodology of the 

three approaches that have been adopted in this study. The 

performance evaluation parameters and the experimental 

results are shown in section 4. In addition, the discussion is 

presented in section 5. Finally, section 6 gives the conclusion 

of this study.   

2. FUNDAMENTAL CONCEPTS

The fundamentals of Microarray technology are discussed 

here. To begin, the basics of Microarray technology and gene 

expression on Microarrays are covered. Class prediction 

(classification) and its methodologies will be the focus of this 

investigation as well as the use of genes in cancer 

classification. The three main types of feature selection 

techniques Filter, wrapper, and the embedding approach will 

be reviewed.  

2.1 Microarray gene expression 

DNA Biologists now have a strong tool in microarray 

technology (commonly known as "DNA chips") for keeping 

tabs on how genes are being expressed in various tissues and 

organs [17]. With this method, scientists may check how many 

genes are being actively expressed all at once. There are often 

hundreds of genes (high dimensionality) and just a few of 

samples available in gene expression data. In addition, it has a 

ton of unnecessary and redundant components. Health 

professionals make extensive use of microarrays to study 

illness mechanisms and develop effective treatments [18].  

Microarray technology has created a large microarray data 

collection reflecting gene expression developed from tissue 

and cell samples obtained. Gene expression data normally 

receives thousands of genes (sample). Therefore, these data 

are well known for their high, detailed, and broad range of 

detail [19]. Microarray evidence was instrumental in cancer 

detection and classification. Most microarray data sets contain 

thousands of genes, but there are a significant number of genes 

that do not make any effect on diseases. Intelligent algorithms 

to select genes are necessary because of microarray 

technology [20]. Microarray technology is an approach to 

explain the gene-by-gene interactions of genes. In addition to 

it, the microarray technique can quantify genes activity from 

the entire genome into one experiment [21].  

The most common types of cancer in the human body are 

Leukemia [22]. Leukemia is a cancer of the blood-forming 

white cells in the marrow. WBC will be present in the blood 

of patients with cancer and is fatal. Leukemia can be 

categorized into two (2) types: chronic or acute leukemia. 

These types were classified based on when the disease starts, 

and the damage gets worst. Usually, chronic leukemia strikes 

individuals progressively and as it gets worse it compromises 

the adult or the elderly people. For acute leukemia rapidly 

becomes critical condition and usually occurs in children. For 

a person affected by chronic leukemia, it will not appear at 
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early stages as the stage of malignant cancer and thus the 

person will not have early signs and symptoms for the disease 

[23]. Chronic Lymphocytic Leukemia (CLL) and Chronic 

Myelogenous Leukemia (CML) are two kinds of leukemia that 

are a cause of blood cancer [24]. 

In early stage of acute leukemia, the irregular cells cannot 

damage the white blood cells. In the first stage, the leukemia 

cell increases rapidly and unregulated. Acute Lymphocytic 

Leukemia (ALL) and Acute Myelogenous Leukemia (AML) 

are two main types of leukemia AML, Figure 2 indicates the 

sample of blood microscopic images with different types of 

leukemia [23]. Figure 3 shows the visualization of the process 

in microarray analysis. 

(a) (b) 

(c) (d) 

Figure 2. (a) Acute Lymphocytic Leukemia (ALL); (b) 

Acute Myelogenous Leukemia (AML); (c) Chronic 

Lymphocytic Leukemia (CLL); (d) Chronic Myelogenous 

Leukemia (CML) 

Figure 3. Visualization of the process in microarray analysis 

[24] 

On the other hand, microarray data processing is a crucial 

step in biological function assessments, specifically for cancer 

classification. A large, high-dimensional dataset which 

includes useful genes, redundant genes, irrelevant genes, and 

noisy genes are generated from the microarray data. To solve 

the issues caused by a redundant or unnecessary gene, the 

scientists have developed a technique called gene selection 

[24].  

Unfortunately, in microarray data, the size of features or 

genes is essentially larger than the number of samples. 

However, the microarrays gene expression data is so sparse 

that even a support vector machine classifier cannot get a 

reasonable result. Consequently, more reliable cancer 

classification requires a preprocessing phase of gene selection 

or feature selection prior to the classification itself [25]. 

2.2 Feature (Gene) selection 

With regards to gene expression and in order to identify the 

genes that are of interest from microarray data, feature 

selection methods are frequently employed. Discovering 

genes with unique expression levels requires feature selection. 

Gene prioritization is another name for the feature (gene) 

selection process, as is biomarker discovery [1]. The analysis 

of microarray data is difficult because there are too few 

samples and too many features to work with. Microarray data 

is sparse because of the experimental procedure. The post-

processing of many microarray data sets is affected by the 

presence of missing values. Singular Value Decomposition 

(SVD) based methods (SVDimpute), weighted K-nearest 

neighbors (KNNimpute), and row average are used to address 

this issue [26]. Filter, embedded, and wrapper methods are the 

three main categories of feature selection techniques. The 

effectiveness of these methods is conditional on how they 

influence the development of the underlying classification 

model [27]. The general framework for feature selections has 

recently been expanded to include new hybrid and ensemble 

methods. In the following paragraphs, we will discuss the 

fundamentals of these three categories and the algorithms that 

underlie them. 

2.2.1 Filter approach 

The filter method assesses each feature independently using 

its general statistical characteristics [1]. With the Filter method, 

no need to any kind of learning algorithm. As a result, it 

doesn't depend on the classifier. The usual features (genes) 

were ranked according to certain criteria, and those with the 

highest scores were chosen for further study. These features 

are then sent into a classifier or a wrapper technique. The most 

common types of filter approaches are: Mutual Information 

(MI) [28] where it calculate the dependency level between two

independent features. So, in this procedure, how much one

variable (X) have information about another (Y). Information

Gain (IG) [29] is a uni-variant Filter method that calculate the

amount of information a feature provides about a specific class.

Thus, the feature that provides the most information is closely

related, while the feature that are not related provides no

information. A rise in entropy is the standard unit for

measuring information gains (level of impurity). Therefore, a

threshold is established, and features scoring above the

threshold are picked for further analysis. High information

gain leads to high class purity, which in turn increases the

likelihood of obtaining the target class [9]. On the other hand,

there is another type of Filter method called Minimum

Redundancy Maximum Relevance (mRMR) [30], which is

multi-variant Filter method with the goal of selecting features

that maximize the relevance of the genes while reducing

redundancies within each class. Therefore, mutually exclusive

features that do not mimic each other are chosen. Another filter

method called Laplacian Score (LS) [31] which is defined as

is a feature filtering method that uses an unsupervised

approach to identify relationships between features. This

method is based on the Laplacian Eigen map and Preserving

Projection, and it assumes that features belonging to the same

class should be close to each other. The LS evaluates each

feature based on its ability to preserve its own locality.
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Another type of multi-variant Filter method known as 

Correlation-Based Feature Selection (CFS) [32] which ranks 

the features using the correlation between the heuristic 

evaluation functions, the multi-variant. The goal of CFS is to 

decrease the correlation between features and increase the 

correlation between features and the class. Finally, Fast 

correlation-based Filter (FCBF) [33], is a multivariate gene 

selection approach that starts with a full set of features (genes). 

It calculates gene dependencies using the symmetrical 

uncertainty (SU) measurement and identifies the optimal 

subset using a backward selection method informed by a 

sequential search. FCBF is an effective computational 

approach for finding redundant and irrelevant features. It 

assesses individual qualities and discovers major associations, 

then heuristically eliminates duplicate information. An 

internal ending condition causes it to terminate if no Between-

Groups features can be found. 

2.2.2 Wrapper approach 

Wrapper approaches requires the use of learning methods to 

choose the best possible collection of features [34]. By 

combining the model hypothesis with the classifier in the 

search space, a more precise classification result can be 

achieved. The effectiveness of the wrapper technique is 

determined by the accuracy of the chosen classifier. This 

approach often employs evolutionary or biologically inspired 

algorithms to guide the search process [35]. The wrapper 

approach begins by generating a population of potential 

solutions, or feature subsets. These subsets are then evaluated 

using a learning strategy and a fitness function. Iteration is 

often used to improve the results. This approach can be 

computationally expensive and carries a higher risk of 

overfitting, but it generally produces better performance than 

the filter approach [34]. The most commonly used wrapper 

methods are:  

Genetic Method (GA) [36] is a heuristic search algorithm 

that uses the principles of natural evolution and natural 

selection to find solutions to problems. The GA works by 

generating a population of potential solutions, called 

chromosomes, and applying three operations - selection, 

crossover, and mutation - to produce offspring with improved 

characteristics. The selection operation identifies the fittest 

chromosomes, which are then passed on to the next generation. 

In the crossover operation, two individuals are selected 

through the selection process. For each individual, a random 

crossover point is chosen and the two individuals exchange 

genetic material to create new offspring. Mutation is also 

included to maintain diversity in the population. 

Another algorithm is evolutionary bioinspired from bees 

known as Artificial Bee Colony ABC) [37]. It takes its cues 

from the foraging habits of bees. It is based on three types of 

bees: employed bees, onlooker bees, and scout bees. 

Employed bees search for solutions, known as food sources, 

and share information about them with the onlooker bees, who 

remain in the hive and dance to communicate the location of 

the food sources. Onlooker bees select the best food sources 

discovered by the employed bees. If a food source does not 

improve, the employed bee becomes a scout bee and randomly 

searches for new food sources. The scout bees contribute to 

the diversity of the population by introducing new solutions 

into the search process.  

Also, another algorithm is inspired by bird flocks, fish 

schooling patterns, and swarm theory recognized as Particle 

Swarm Optimization (PSO) [38]. It is a population-based 

optimization approach. Where, it involves a population of 

particles, each of which represents a candidate solution and 

has a position within the search space. The goal of PSO is for 

all particles to find the optimal position. To update their 

positions, particles change their velocity based on their own 

previous experiences and the best performance of their 

neighbors, until the optimal position is reached.  

Moreover, another nature-inspired optimization method 

which is based on the behavior of grasshopper swarms called 

Grasshopper Optimization Algorithm (GOA) [39]. In the 

GOA, the positions of the grasshoppers represent candidate 

solutions. The position of each grasshopper is influenced by 

social interaction, the force of gravity, and wind advection. 

The GOA is used to calculate the proximity between two 

grasshoppers. 

2.2.3 Hybrid (Ensemble) approach 

The hybrid method is constructed so as to get benefits from 

both approaches: the filter and wrapper. As a result, it 

combines the excellent performance of the wrapper strategy 

with the computational economy of the filter approach [40]. 

The first step in its two-stage design reduces the dimension of 

the feature space. The next step is to use the wrapper technique 

to select best collection of features. The hybrid model may not 

be as accurate because the filter and wrapper are applied in 

separate steps [41]. 

The ensemble method operates under the premise that the 

results obtained by combining the findings of several experts 

is superior to those obtained by using the findings of a single 

expert. A single wrapper approach may produce excellent 

results on one dataset, but may not perform well on another. 

Accordingly, by combining multiple methods, the overall 

error rate is reduced [42]. 

Lu et al. [43] presented a new hybrid feature selection 

algorithm named MIMAGA-Selection based on the 

combination of both Mutual Information Maximization (MIM) 

Algorithm with the Adaptive Genetic Algorithm (AGA). 

Initially, MIM was used as a filter to identify genes with a high 

dependence on all other genes. The number of genes selected 

using MIM was set to 300. After then, AGA was initiated. So, 

the proposed algorithm, referred to as the AGA, was tested 

using six multi and binary cancer gene expression datasets. An 

extreme learning machine (ElM) was chosen as the classifier 

and the classification process was repeated 30 times. The 

authors used the same dataset with the same number of target 

genes to develop the MIMAGA-Selection technique and to 

evaluate the efficiency of three existing algorithms—

sequential forward selection (SFS), ReliefF, and MIM with the 

ElM classifier. These finding proved that MIMAGA-Selection 

was more accurate than other feature selection algorithms 

currently in use. In addition, four distinct classifiers—a back 

propagation neural network (BP), a support vector machine 

(SVM), an extreme learning machine (ELM), and a 

regularized extreme learning machine—are used by the 

authors to classify the gene chosen via MIMAGA-Selection. 

The accuracy of all four classifiers is greater than 80%. 

Pashaei et al. [44] provided a fresh approach to gene 

selection using Binary Black Hole Algorithm (BBHA) and 

Random Forest Ranking (RFR). By using RFR as a filter, the 

genes were sorted using RFRBBHA-Bagging. The top 500 

genes were then combined to form a new gene subset that 

would be fed into BBAH. From the pool of candidate genes 

narrowed down in the previous stage, the Black Hole 

Algorithm was used to choose the set of genes that would 
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ultimately serve as the basis for the organism. The suggested 

technique was assessed by applying the Bagging classifier to 

four sets of Microarray cancer data with 10-fold cross 

validation. This procedure is repeated 100 times. Finally, 

seven well-known classifiers were used to be compared with 

the RFR-BBHA-Bagging proposed method; the results 

showed that the proposed method had the highest accuracy 

across both datasets. 

2.3 Classification 

Data classification is a data mining approach used to 

forecast which of a fixed set of class labels will be applied to 

a given batch of data. In supervised learning methods like 

classification, the label for each category is explicitly stated. 

First, the model (classifier) is formed based on a set of training 

data, paired with a class label. This is known as the learning 

phase. Second, the model is applied to unknown data to 

forecast its class label, and third, the classifier's efficacy is 

evaluated [45]. The following sections present some of the 

most popular approaches that are usually utilized for 

classifying Microarray data. 

2.3.1 Support vector machine (SVM) 

Is a supervised machines learning algorithm. The primary 

focus of support vector machines (SVMs) is finding a 

hyperplane that splits the tuples into classes in the most 

efficient way possible. By utilizing the margin and the support 

vector, we can determine the hyperplane. The vectors (data 

points) used to form the hyperplane are used to derive the 

support vector. The margin is defined as the distance from the 

hyperplane to the nearest point. The hyperplane is the line that 

divides the data into two parts, where each portion ultimately 

belongs to a single class, where the data can be separated 

linearly. The optimal hyperplane is found by maximizing the 

margin, defined as the distance from the hyperplane's origin to 

the nearest data point (the support vector) in either class. Since 

this is the case, SVM looks for the hyperplane with the greatest 

Maximum Marginal Hyperplane (MMH). If the data cannot be 

separated linearly, then the approach is modified to become a 

nonlinear SVM, with the goal being the discovery of nonlinear 

hypersurfaces. Since most real-world data is unstructured and 

non-linearly separable so, the soft margin classifier is the 

method of choice. This allows some points to be on the wrong 

side of the hyperplane, which in turn allows the hyperplane to 

be violated at those points. SVM's main benefits are its 

efficiency and its suitability for use with high-dimensional 

data. More importantly, it performs well when there are more 

features than samples [45, 46]. 

2.3.2 K Nearest Neighbour (KNN) 

K-nearest neighbor is a straightforward non-parametric

instance-based supervised learning algorithm. K-NN works on 

the basis of the similarity measure, with new examples being 

classified by first looking for the K most similar ones among 

the training set (most similar instances, like neighbors). Using 

a distance metric, such as the Euclidean distance, allows us to 

evaluate how similar two objects are to one another. Once this 

is complete, the K members vote on how to divide up the new 

instances (similar neighbors). One of K-NN's benefits is how 

easy it is to apply. Furthermore, the input data does not require 

any particular distribution [47]. 

2.3.3 Gaussian naive bayes classifier 

As a supervised learning algorithm, Gaussian naive Bayes 

(GNB) classification utilizes Bayes' theorem to place 

observations into one of many classes depending on the values 

of predictor variables. Under the naive assumption that the 

predictor variables are class-conditionally independent, GNB 

classifiers estimate the conditional probabilities that an 

observation belongs to a specific class given the values of the 

predictor variables [48]. 

2.3.4 Linear discriminant analysis (LDA) 

The LDA algorithm is a popular choice among 

classification algorithms and it works by determining the 

variance values between and within different classes [49]. 

LDA employs a linear transformation to identify a projection 

matrix that maximizes the ratio of within-class to between-

class variances in a lower dimensional space. The LDA 

transformation is calculated using the method of scattering 

matrices, which is based on Eigen decomposition. This 

method is often used for data with high dimensions in various 

applications. Discriminant analysis classifiers have numerous 

applications, including face recognition and image retrieval. 

Furthermore, LDA classifiers have been utilized in the medical 

field for various purposes, for example, analyzing 

electromyography signals, classifying lung cancer, and 

diagnosing breast cancer as stated in the study [50]. 

3. METHODOLOGY

This section presents a detailed structure of proposing an 

efficient approach for distinguishing among three main feature 

selection algorithms (RF, Chi Square, and ANOVA). These 

important algorithms implemented for microarray data 

classification to show the effectiveness of each one. The 

methodology stages consist of three main phases: data 

preprocessing, feature selection, and feature classification. 

Figure 4 shows the proposed block diagram for general feature 

selection algorithm structure. This process of the 

implementation provides the ability of selecting the most 

relevant features that represent the whole dataset, which 

consequently causes the accuracy increasing. 

Figure 4. Proposed block diagram for general feature selection algorithm structure 
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3.1 First phase: Preprocessing 

The first phase is feature scaling which is a method used to 

normalize the range of independent variables or features of 

data and can be considered as data preprocessing step. In this 

work, min-max scaling/normalization is applied, which is the 

simplest method and consists of rescaling the range of features 

to make it in the range [0, 1]. The general formula for 

normalization is given as [51]: 

 𝑥′ =  
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
(1) 

where, max(x) and min(x) are the maximum and the minimum 

values of the features respectively. 

3.2 Second phase: Feature selection 

While, the second phase is feature selection. In this work, 

the three algorithms of feature selection are implemented. 

3.2.1 Relief feature (RF) selection algorithm 

Relief is a feature selection filtering process that estimates 

feature "quality" or "relevance" to the target notion by 

computing a proxy statistic (i.e., predicting endpoint value). 

Statistically speaking, these characteristics are given values 

between -1 (the worst) and +1 (the best) known as feature 

weights (W[A]= weight of feature'A'). (best). Notably, the first 

iteration of the Relief method could only be used to issues of 

binary classification and did not include any way to deal with 

missing data. The original Relief algorithm's Pseudo-code 

phases are depicted in Algorithm 1 [52]. 

Algorithm 1 Pseudo-code for the Original Relief 

Algorithm 

Require: for each training instance a vector of feature 

values and the class value n←  number of training instances 

a ← number of features (i.e. attributes) Parameter: 

m←number of random training instances out of n used to 

update W initialize all feature weights W[A]:= 0.0 

for i:=1 to m do randomly select 'target' instance Ri 

find a nearest hit 'H' and nearest miss 'M' (instances)  

for A:=1 to a do 

W[A]:=  W[A] – diff (A, Ri, H)/m+diff (A, Ri, M)/m     

end for 

end for S 

return the vector W of feature scores that estimate the 

quality of features 

Relief algorithm is a widely used feature selection method 

that aims to identify relevant features by considering the 

differences between nearest neighboring samples. The Relief 

algorithm operates in two phases: the nearest hit and nearest 

miss phases. In each phase, it evaluates the relevance and 

importance of features by examining the differences between 

the feature values of the nearest instances with the same and 

different class labels, respectively. By computing the feature 

weights based on these differences, Relief assigns higher 

weights to features that contribute more to discriminating 

between classes. The Relief algorithm lies in its ability to 

capture feature interactions and dependencies. By comparing 

feature values within neighboring instances, Relief can 

identify features that exhibit consistent differences when class 

labels change. This approach enables the algorithm to 

prioritize features that are most informative for distinguishing 

between different classes in the dataset 

3.2.2 ANOVA 

The ANOVA test compares within-treatment variance with 

between-treatment variation in a given characteristic. Because 

of their ability to tell us whether or not a given feature 

adequately accounts for variation in the dependent variable, 

variances like these play a crucial role in this filtering strategy. 

The feature has not done a sufficient job of explaining the 

variance in the dependent variable if the variance within each 

treatment is bigger than the variance across treatments. If you 

want to do an ANOVA test, you'll need to calculate a F statistic 

for each feature, with the variance between treatments (SST, 

sometimes misunderstood as SSTotal) in the numerator and 

the variation within treatments (SSTotal) in the denominator. 

The test statistic is then put to the test by comparing it to the 

null hypothesis (H0: Mean value is equal across all treatments) 

and the alternative hypothesis (H: At least two treatments 

vary). The typical use of ANOVA is in situations where one 

of the variables is numerical and the other is categorical, such 

as when the input variables to a classification job are 

numerical and the goal variable is a categorical. The test 

findings can be utilized for feature selection, where 

characteristics unrelated to the target variable are eliminated. 

Pseudo-code phases of the ANOVA for feature selection is 

explained in Algorithm 2 [53]. 

Algorithm 2 Pseudo-code of ANOVA for Feature 

Selection 

Input: M: Feature matrix of size S×G where S 

represents sample size and G represent feature size 

Output: Select top N featu 

1: for each feature fi do 

2:  =1,2, …. G 

3: Evaluate the value of MSB  

4: Compute the value of MSW  

5: Compute the F-Statistics value (Fi) 

6: Compute p-value (pi) for each  F-Statistics using the F-

distribution table 

7: if pi < 0.001 then 

8: select the feature fi 

9: append  fi to feature matrix GM 

10: else 

11: feature  fi is discarded 

12: end if 

13: sort the features in ascending order of their p 

value 

14: if size of GM > 500 then 

15: select only top-500 features 

16: else 

17: keep the feature matrix GM as it is 

18: end if 

19: end for 

20: Return the features from the  feature matrix GM     

When ANOVA is applied to microarray data analysis, it 

identifies genes with significant expression variations across 

different cancer subtypes. Also, it measures the variability of 

gene expression levels between groups and computes the F-

statistic. Genes with large F-statistic values are deemed 

important for discriminating between cancer subtypes. 
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3.2.3 Chi-square algorithm 

A chi-square test is used in statistics to test the 
independence of two events. Given the data of two variables, 
we can get both (Observed count O and Expected count E). 
Chi-Square measures how E and O deviates each other. The 

formula of chi-square is [54]:  

𝑥𝑐
2 =

(𝑂𝑖 −𝐸𝑖
)2

𝐸𝑖

(2) 

where: 

c: degree of freedom 

O: observed value(s) 

E: expected value(s) 

Consider a situation in which you need to establish a 

connection between an independent category feature 

(predictor) and a dependent category feature (response). Our 

goal in feature selection is to zero down on those 

characteristics that are reliant on the outcome. In cases when 

the two properties being tested are unrelated, the Chi-Square 

value will be lower since the observed count will be closer to 

the predicted count. Because the Chi-Square value is so high, 

we cannot accept the null hypothesis of independence. What 

this means is that features with larger Chi-Square values are 

more responsive to the response and hence more suitable for 

model training. Among the feature selection algorithms, Chi-

Square is a popular choice. To streamline the classification 

procedure, this method is used to eliminate extraneous features 

[55]. 

In the context of microarray data analysis, Chi Square 

feature selection method focuses on identifying relevant genes 

by assessing the association between gene expression levels 

and cancer subtypes. It quantifies the dependence between a 

gene's expression level and class labels through contingency 

tables and calculates the chi-square statistic. Higher chi-square 

values indicate stronger associations, making those genes 

more informative for cancer classification. 

3.3 Third phase: Classification 

Finally, the third phase is Classification, where four 

classifiers are used to evaluate the quality of the features that 

have been selected in the previous phase. The utilized 

classifiers are: SVM, GNB, LDA, and KNN. These classifiers 

will be used to obtain the accuracy of the depended feature 

selection algorithms: RF, ANOVA, and Chi-square. The 

implementation will be done using all and (1%, 2%, 3%, 4%, 

and 5%) ratios of ten important datasets. 

The model was trained and evaluated in this study using K-

fold cross-validation. Multiple categories have been 

established for the dataset. There are K groups, or 'folds,' 

where K is the total number of groupings. Simultaneously, 

cross-validation is a method for testing ML models. One such 

method is called k-fold cross-validation, and it involves 

splitting a dataset into k groups, with k-1 of those groups 

training a model and the remaining k groups testing and 

evaluating it. In this method, the model is trained k times, with 

each iteration being evaluated by a different fold. In K-fold 

cross-validation, it means that everyone in every fold helps to 

train and evaluate the model. One example of cross-validation 

is shown in Figure 5 (5-fold). The picture shows that there are 

5 different subsets, or "folds," of the dataset; four of these folds 

are responsible for training the model, while the fifth evaluates 

its progress after each iteration. At the end we evaluate the 

score of the model by finding the mean of all five scores that 

we have obtained through the iterations. In our study, we also 

have employed 5-fold cross-validation. 

Figure 5. Graphical representation of K-fold cross-

validation 

4. EXPERIMENTAL RESULTS

This section deals with presenting a detailed description of 

the famous ten depended datasets in this work. Then, the 

performance analysis of used algorithms with these datasets 

will determined via standard equations. The results of the 

implementation for all the four algorithms using all datasets 

are determined, listed, and plotted. Then, those of each 

algorithm determined and plotted. 

4.1 Datasets description 

Ten microarray datasets have been selected for this work 

where, they are briefly described in Table 1 and were obtained 

from (Http://Csse.Szu.Edu.Cn/Staff/Zhuzx/Datasets.Html). 

However, the reason behind selecting these datasets was; they 

include both binary and multiclass classes where, the latter of 

which is more difficult to distinguish. 

Table 1. Description of depended microarray datasets 

Datasets #Samples #Genes #Classes 
Class 

Distributions 

ALL-

AML 
72 7129 2 

'ALL': 47, 

'AML': 25 

ALL-

AML-3 
72 7129 3 

'AML': 25, 

'B-cell': 38, 

'T-cell': 9 

ALL-

AML-4 
72 7129 4 

'B-cell': 38, 

'BM': 21, 

'PB': 4, 

'T-cell': 9 

Breast 

Cancer 
97 24481 2 

'non-relapse': 

51, 

'relapse': 46 

CNS 60 7129 2 '0': 39, '1': 21 

Colon 

Tumor 
62 2000 2 

'Normal': 22, 

'Tumor': 40 

Lung 

Cancer 
203 12600 5 

'1': 139, '2': 17, 

'3': 6, '4': 21, 

'5': 20 

MLL 72 12582 3 

'ALL': 24, 

'AML': 28, 

'MLL': 20 

Ovarian 

Cancer 
253 15154 2 

'Cancer': 162, 

'Normal': 91 

SRBCT 83 2308 4 
1: 29, 2: 11, 

3: 18, 4: 25 
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4.2 Performance analysis 

 

All the experiments of this work were carried out using 

Python programming environment on a PC with Intel(R) Core 

(TM) i7-4702MQ CPU and 8.00 GB RAM. In addition, the 

libraries of (sklearn, numpy, and ReliefF) were used to 

conduct the experiments of the proposed methodology. 

Regarding the evaluation metrics used for obtaining the results, 

the following were taken into account [56]: 

 

Accuracy =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100 (3) 

 

Precision =
True Positive

Total Predected Positive
 × 100 (4) 

 

Recall =
True Positive

Total Actual Positive
 × 100 (5) 

 

F1 − Score =
Precision ×   Recall

Precision +   Recall
 × 100 (6) 

 

where, accuracy is the fraction of observations for which a 

prediction was correct, Precision is the fraction of positively 

predicted observations for which a prediction was correct, 

Recall is the fraction of positively predicted observations for 

which a prediction was correct, and F1-Score is the weighted 

average of Precision and Recall. In this study, we apply the 

SVM, GNB, LDA, and KNN classifiers to 10 datasets and run 

them through the aforementioned assessment metrics to get a 

sense of how they affect the performance of the actual system. 

 

4.3 Experimental results 

 

To demonstrate the efficiency of four different classifiers 

investigated in this study, four different experiments were 

conducted on above mentioned datasets as explained in the 

following sections. From the total number of each dataset 

illustrated in Table 1, there are five ratios of them been 

selected to be depended in the experiments (2, 3, and 4). The 

ratios are (1%, 2%, 3%, 4%, and 5%). Figure 6 shows these 

ratios for all ten datasets. 

 

 
 

Figure 6. Different ratios of selected genes to be used by the 

three algorithms 

 

Experiment 1: Comparative Analysis Using All Genes 

 

Experiment-1 involved the utilization of raw gene 

expression data from ten microarray datasets. The data was 

initially divided into training and testing sets using a fivefold 

cross-validation approach. To ensure equal contribution of all 

genes, the gene data of each dataset underwent scaling with 

the Min-Max scaling method. Four different classifiers were 

then independently trained on each scaled training set to assess 

their performance on unseen scaled data (testing set). The 

evaluation metrics used were Accuracy and F1, and the results 

are presented in Table 2. 

The results from Experiment-1, as shown in Table 2, 

indicate the following findings. For the SVM classifier, the 

highest accuracy and F1 values were achieved when using the 

Ovarian Cancer and SRBCT datasets. On the other hand, the 

GNB classifier demonstrated the best accuracy and F1 scores 

when utilizing the SRBCT dataset. In the case of both the LDA 

and KNN classifiers, the Ovarian Cancer dataset yielded the 

best accuracy and F1 values. 

These observations provide insights into the performance of 

different classifiers when applied to the scaled testing data of 

the microarray datasets in Experiment-1.

 

Table 2. Performance analysis of SVM, GNB, LDA, and KNN on ten microarray datasets without gene section algorithm 

 

# Dataset 
SVM GNB LDA KNN 

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) 

1 ALL-AML 98.57 98.50 98.57 98.56 90.10 89.10 85.90 83.87 

2 ALL-AML-3 97.24 95.77 94.38 92.31 83.24 78.74 80.38 78.47 

3 ALL-AML-4 94.48 92.89 90.19 90.39 77.62 74.45 78.95 78.77 

4 Breast Cancer 67.11 62.97 49.47 43.43 59.00 55.25 54.84 50.96 

5 CNS 65.00 58.50 65.00 62.11 68.33 62.18 58.33 52.70 

6 Colon Tumor 87.18 86.15 61.79 60.49 79.23 75.31 77.69 75.03 

7 Lung Cancer 94.09 92.23 89.12 87.91 94.57 88.94 87.62 83.69 

8 MLL 97.24 96.81 94.57 94.21 89.24 88.64 83.43 82.17 

9 Ovarian Cancer 100.00 100.00 89.72 88.84 100.00 100.00 94.05 93.59 

10 SRBCT 100.00 100.00 98.75 98.57 56.25 52.57 82.28 82.95 

Experiment 2: Comparative Analysis Using a Subset of 

Genes Selected By RF 

 

For Experiment-2, the RF feature selection algorithm was 

employed to select specific ratios from the datasets, using 

different classifiers. Figures 7 to 14 depict the results obtained 

from this experiment. Each classifier has two corresponding 

figures, one representing the accuracy and the other 

representing the F1 values. The findings reveal that the SVM 

classifier achieved the highest accuracy and F1 scores when 

utilizing the 5% ratio of the Ovarian Cancer dataset (Figures 7 

and 8). On the other hand, the GNB classifier demonstrated its 

best performance when using the MLL dataset with a 5% ratio 

(Figures 9 and 10). Furthermore, the LDA classifier yielded its 

best results when depending on the Ovarian Cancer dataset 

with a 5% ratio (Figures 11 and 12). Lastly, the KNN classifier 

showed optimal performance with the Ovarian Cancer dataset 

at a 4% ratio (Figures 13 and 14). 

ALL-AML ALL-AML-3 ALL-AML-4 Breast Cancer CNS Colon Tumor Lung Cancer MLL Ovarian Cancer SRBCT

1% 71 71 71 244 71 20 126 125 151 23

2% 142 142 142 489 142 40 252 251 303 46

3% 213 213 213 734 213 60 378 377 454 69

4% 285 285 285 979 285 80 504 503 606 92

5% 356 356 356 1224 356 100 630 629 757 115
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Figure 7. Accuracy evaluation metric of SVM for the ten 

microarray datasets using RF algorithm 

 

 
 

Figure 8. F1 evaluation metric of SVM for the ten 

microarray datasets using RF algorithm 

 

 
 

Figure 9. Accuracy evaluation metric of GNB for the ten 

microarray datasets using RF algorithm 

 

 
 

Figure 10. F1 evaluation metric of GNB for the ten 

microarray datasets using RF algorithm 
 

 
 

Figure 11. Accuracy evaluation metric of LDA for the ten 

microarray datasets using RF algorithm 

 
 

Figure 12. F1 evaluation metric of LDA for the ten 

microarray datasets using RF algorithm 

 

 
 

Figure 13. Accuracy evaluation metric of KNN for the ten 

microarray datasets using RF algorithm 

 

 
 

Figure 14. F1 evaluation metric of KNN for the ten 

microarray datasets using RF algorithm 

 

These findings highlight the varying performance of 

classifiers based on different datasets and ratios. The results 

emphasize the importance of dataset selection and the impact 

it has on the performance of classifiers using the RF feature 

selection algorithm. 

Experiment 3: Comparative Analysis Using a Subset of 

Genes Selected by ANOVA Algorithm 

 

In Experiment-3, the ANOVA feature selection algorithm 

was employed to select specific ratios from the ten microarray 

datasets, using various classifiers. The evaluation metrics 

results (Accuracy and F1) for all classifiers (SVM, GNB, LDA, 

and KNN) are depicted in Figures 15 to 22. For the SVM 

classifier, the SRBCT dataset with ratios of 3%, 4%, and 5% 

produced the best accuracy and F1 scores, along with the 

Ovarian Cancer dataset that showed similar values across all 

ratios (Figures 15 and 16). The GNB classifier achieved its 

best results when utilizing ratios of 2%, 3%, and 4% from the 

SRBCT dataset (Figures 17 and 18). Similarly, the LDA 

classifier demonstrated its optimal performance when 

depending on the Ovarian Cancer dataset with ratios of 3% and 

5% (Figures 19 and 20). Lastly, the KNN classifier exhibited 

the highest accuracy and F1 values when utilizing the SRBCT 

dataset with ratios of 2%, 3%, 4%, and 5% (Figures 21 and 22). 

These findings emphasize the varying performance of 

classifiers based on different datasets and ratios when using 

the ANOVA feature selection algorithm. 
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Figure 15. Accuracy evaluation metric of SVM for the ten 

microarray datasets using ANOVA algorithm 

 

 
 

Figure 16. F1 evaluation metric of SVM for the ten 

microarray datasets using ANOVA algorithm 
 

 
 

Figure 17. Accuracy evaluation metric of GNB for the ten 

microarray datasets using ANOVA algorithm 

 

 
 

Figure 18. F1 evaluation metric of GNB for the ten 

microarray datasets using ANOVA algorithm 
 

 
 

Figure 19. Accuracy evaluation metric of LDA for the ten 

microarray datasets using ANOVA algorithm 

 
 

Figure 20. F1 evaluation metric of LDA for the ten 

microarray datasets using ANOVA algorithm 

 

 
 

Figure 21. Accuracy evaluation metric of KNN for the ten 

microarray datasets using ANOVA algorithm 

 

 
 

Figure 22. F1 evaluation metric of KNN for the ten 

microarray datasets using ANOVA algorithm 

 

Experiment 4: Comparative Analysis Using a Subset of 

Genes Selected by Chi Square Algorithm 

 

In Experiment-4, the Chi-square feature selection algorithm 

was utilized to select specific ratios from the ten microarray 

datasets, employing multiple classifiers. The evaluation 

metrics results (Accuracy and F1) for all classifiers (SVM, 

GNB, LDA, and KNN) are illustrated in Figures 23 to 30. For 

the SVM classifier, the SRBCT dataset with a 1% ratio 

exhibited the best accuracy and F1 scores, along with the 

Ovarian Cancer dataset that demonstrated the same values but 

for ratios of 2%, 3%, 4%, and 5% (Figures 23 and 24). The 

GNB classifier achieved its optimal performance when 

utilizing the SRBCT dataset across all ratios (Figures 25 and 

26). Similarly, the LDA classifier demonstrated its highest 

accuracy and F1 values when depending on the Ovarian 

Cancer dataset with ratios of 4% and 5% (Figures 27 and 28). 

Lastly, the KNN classifier exhibited superior performance 

when using the SRBCT dataset across all ratios (Figures 29 

and 30). 

These results highlight the performance variation of 

classifiers based on different datasets and ratios when 

employing the Chi-square feature selection algorithm. 
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Figure 23. Accuracy evaluation metric of SVM for the ten 

microarray datasets using Chi Square algorithm 

 

 
 

Figure 24. F1 evaluation metric of SVM for the ten 

microarray datasets using Chi Square algorithm 

 

 
 

Figure 25. Accuracy evaluation metric of GNB for the ten 

microarray datasets using Chi Square algorithm 

 

 
 

Figure 26. F1 evaluation metric of GNB for the ten 

microarray datasets using Chi Square algorithm 

 

 
 

Figure 27. Accuracy evaluation metric of LDA for the ten 

microarray datasets using Chi Square algorithm 

 
 

Figure 28. F1 evaluation metric of LDA for the ten 

microarray datasets using Chi Square algorithm 

 

 
 

Figure 29. Accuracy evaluation metric of KNN for the ten 

microarray datasets using Chi Square algorithm 

 

 
 

Figure 30. F1 evaluation metric of KNN for the ten 

microarray datasets using Chi Square algorithm 

 

 

5. DISCUSSION 

 

From the four experiments conducted, we have observed 

that the results obtained by the four tested classifiers tend to 

vary among the ten tested datasets. It is evident that the highest 

accuracy and F1 values for the ten tested datasets are not 

consistently the same. Several factors contribute to these 

variations. 

Firstly, the number of samples in each dataset differs, which 

impacts the performance of feature selection methods. The 

effectiveness of feature selection can be influenced by the 

availability of an adequate number of samples for learning 

patterns and making accurate predictions. Datasets with larger 

sample sizes tend to provide more reliable and robust results. 

Additionally, the distribution of samples across the classes 

in the datasets also varies. Class imbalance can pose 

challenges in feature selection, as it may lead to biased or 

inaccurate feature importance estimations. The suitability of 

feature selection methods can depend on their ability to handle 

imbalanced class distributions effectively. 

Furthermore, the nature of gene expression varies across 

different datasets. Some datasets may contain genes with less 

noise or have clearer patterns, while others may have more 
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noise or complex variations. The efficacy of feature selection 

methods can be influenced by the characteristics of gene 

expression in a particular dataset. 

To address these factors, we conducted four experiments, 

each focusing on different aspects. The first experiment 

encompassed the entire dataset scope, while the subsequent 

experiments were conducted using different ratios (1%, 2%, 

3%, 4%, and 5%) of the datasets. We employed the RF, 

ANOVA, and Chi-square feature selection algorithms for 

Experiments 2, 3, and 4, respectively. 

Regarding to Expriment-1, from the results illustrated in 

Table 2, it can be observed that when for the SVM classifier, 

the highest accuracy and F1 values obtained when using the 

datasets (Ovarian Cancer, and SRBCT). While for the GNB 

classifier, the best values of both (accuracy and F1) obtained 

when using the SRBCT dataset. However, the best values of 

(accuracy and F1) for both (LDA and KNN) classifier have 

been determined when using Ovarian Cancer dataset. 

For Expriment-2, Figures 6 to 13 show all obtained results 

when using the RF feature selection algorithm to select the 

depended ratios from the specified datasets when using the 

depended classifiers. Hence, there are two figures for each 

classifier (one represents the accuracy and the other represents 

the F1 values). For the SVM classifier, the best values of both 

(accuracy and F1) obtained when depending the 5% ratio of 

Ovarian Cancer, as shown in Figures 6 and 7. While, for the 

GNB classifier, the best values obtained when using MLL 

dataset with 5%, as shown in Figures 8 and 9. Moreover, for 

the LDA classifier, the best values obtained when depending 

the Ovarian Cancer with 5% ratio, as shown in Figures 10 and 

11. In addition, the Ovarian Cancer dataset with 4% produced

best values when using the KNN classifier, as shown in

Figures 12 and 13.

For Expriment-3, Figures 14 to 21 show all obtained results 

when using the ANOVA feature selection algorithm for the 

same purpose. For the SVM classifier, SRBCT dataset with 

ratios (3%, 4%, and 5%) gave best values beside the Ovarian 

Cancer dataset which has the same values but for all depended 

ratios, as shown in Figures 14 and 15. Adding to that, for the 

GNB classifier, the best values obtained when using (2%, 3%, 

and 4%) ratios of the SRBCT dataset, as shown in Figures 16 

and 17. For the LDA classifier, the best values obtained when 

depending the Ovarian Cancer with (3% and 5%) ratios, as 

shown in Figures 18 and 19. Finally, the SRBCT dataset with 

(2%, 3%, 4%, and 5%) produced best values when using the 

KNN classifier, as shown in Figures 20 and 21. 

For Expriment-4, Figures 22 to 29 show all obtained results 

when using the Chi-square feature selection algorithm for the 

same purpose. For the SVM classifier, SRBCT dataset with 

1% ratio gave best values beside the Ovarian Cancer dataset, 

which has the same values, but for the (2%, 3%, 4%, and 5%) 

ratios, as shown in Figures 22 and 23. The SRBCT dataset with 

all depended ratios produced best values for the GNB 

classifier, as shown in Figures 24 and 25. Then, for the LDA 

classifier, the best values obtained when depending the 

Ovarian Cancer with (4% and 5%) ratios, as shown in Figures 

26 and 27. In addition, the SRBCT dataset for all ratios 

provided best values when using the KNN classifier, as shown 

in Figures 28 and 29. 

Overall, the performance variations among classifiers and 

feature selection methods can be attributed to several factors. 

Firstly, the dataset size plays a crucial role. Larger datasets 

tend to provide more representative samples, which can 

enhance the performance of classifiers. Similarly, complex 

datasets with intricate relationships between features may pose 

challenges for certain classifiers and feature selection methods. 

Additionally, noise levels in the datasets can impact 

performance. Noisy datasets with high levels of irrelevant or 

misleading information may negatively affect the performance 

of classifiers. Feature selection methods that effectively filter 

out noise can lead to improved classification accuracy. 

Moreover, the inherent properties of classifiers and feature 

selection methods also contribute to performance differences. 

Each classifier has its own assumptions, strengths, and 

limitations that may align differently with the characteristics 

of the datasets. Similarly, feature selection methods have 

different strategies for identifying relevant features, which can 

impact their effectiveness depending on the dataset's 

characteristics. By considering these factors, researchers and 

practitioners can gain insights into the observed performance 

differences and make informed decisions when selecting 

classifiers and feature selection methods for specific datasets. 

This understanding allows for more accurate and reliable 

microarray data classification. 

6. CONCLUSIONS

In this research, an efficient approach is produced which 

capable of distinguishing among three significant feature 

selection algorithms (RF, Chi Square, and ANOVA). These 

important algorithms implemented for microarray data 

classification to show the effectiveness of each one. The 

proposed approach passing through three stages: data 

preprocessing, followed by feature selection, and ended by 

feature classification. The focusing of our proposed approach 

concerned with accuracy enhancing. Consequently, the 

implementation provided capabilities of selecting the most 

relevant features that represent the datasets, which accordingly 

causes to increase the accuracy.  

Based on the results obtained using all genes of all datasets, 

we recommend relying on the SVM classifier to achieve the 

highest accuracy and F1 scores. The LDA classifier also 

demonstrates competitive performance and can be considered 

as a secondary option. When using the RF feature selection 

algorithm with different dataset ratios, it is preferable to utilize 

the SVM classifier, which yields the best results when utilizing 

5% of the datasets. For the ANOVA feature selection 

algorithm and dataset ratios of 3%, 4%, and 5%, the SVM 

classifier consistently delivers superior outcomes. Lastly, 

when employing the Chi-square feature selection algorithm 

with all dataset ratios, both the SVM and GNB classifiers 

exhibit the best performance. 

Our research has important implications for real-world 

applications involving microarray data. By following our 

recommendations, practitioners can improve accuracy and 

performance in microarray data analysis, leading to more 

reliable predictions for tasks like disease diagnosis and 

treatment response prediction. These recommendations 

consider specific dataset characteristics, enabling practitioners 

to select the most suitable feature selection algorithms and 

classifiers. The insights gained from our research are 

transferable to similar microarray datasets, reducing the need 

for trial and error in selecting appropriate techniques. 

Additionally, the principles we present can be applied to other 

domains with high-dimensional data, benefiting researchers 

and practitioners in bioinformatics, genomics, and data mining. 

The findings of our research advance the understanding of 
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microarray data classification and feature selection in several 

ways. Firstly, by comparing and evaluating multiple feature 

selection methods, we contribute to the existing knowledge 

base regarding their performance and suitability in microarray 

data analysis. Secondly, our recommendations for method 

selection based on dataset characteristics provide practical 

guidelines for researchers and practitioners, enabling them to 

make more informed decisions in their work. Lastly, by 

discussing the implications of our research for real-world 

applications, we bridge the gap between theoretical 

advancements and practical implementation, enhancing the 

effectiveness and reliability of microarray data analysis in 

real-world scenarios. 
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NOMENCLATURE 

𝑥′ min-max scaling/normalization for features 

x value of the feature 

N number of training instances 

M number of random training instances out of n 

W weights of features 

𝑥𝑐
2 value of chi-square test 

O observed value(s) 

E expected value(s) 

Greek symbols 

𝛼 number of features 

Subscripts 

c degree of freedom 
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