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In medical diagnosis systems, predicting and quantifying COVID-19 lung abnormalities 

from chest Computed Tomography (CT) images is essential for early identification of 

infected lesions and accurate diagnosis. Visual assessment and quantification of COVID-

19 lung tissues by expert radiologists can be costly and error-prone. Consequently, 

numerous deep learning (DL)-based segmentation models have been developed for the 

automatic segmentation and prediction of infected lung tissues. Among these models, the 

Multi-Scale Attention-based UNet (MS-AUNet) can extract complex geometric features 

from CT images and segment small boundary areas infected by COVID-19. However, it 

may introduce errors by misclassifying normal tissues that resemble infected tissues. To 

address this issue, this study proposes a Marginal Space Deep Learning (MSDL) model in 

conjunction with the MS-AUNet to accurately segment normal and COVID-19-infected 

tissues from chest CT images. Initially, the MS-AUNet is applied to obtain Region-Of-

Interests (ROIs) from the chest CT images. Subsequently, these ROIs are refined using the 

MSDL model, which consists of a Sparse Dynamic Deep Neural Network (SDeepNet) and 

an Active Shape Model (ASM) for non-rigid tissue segmentation of COVID-19 CT images. 

The SDeepNet acts as a boundary detector, automatically learning dynamic sparse features 

from the given ROI in each marginal shape space and detecting bounding boxes to localize 

target tissues. The ASM is employed to learn shape deformation and accurately segment 

infected lung tissues. Experimental results demonstrate that the MS-AUNet-MSDL model 

using a CT image dataset achieves 89.7% dice score, 88% recall, 89.4% precision, 11.42mm 

Hausdorff distance, and 22.8% Root Mean Square Error (RMSE). 
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1. INTRODUCTION

COVID-19 poses a significant threat to human health and 

life safety, primarily attributed to lung manifestations and 

intestinal infections [1, 2]. As COVID-19 is highly contagious, 

the early detection of infected individuals is essential for 

controlling the disease's spread [3]. Consequently, the rapid 

and accurate detection and treatment of COVID-19 using lung 

X-rays and CT images are crucial [4]. In countries with high

rates of COVID-19 cases, chest CT images serve as the

primary screening technique, providing comprehensive 3D

views of lung regions [5]. Numerous studies have, therefore,

investigated COVID-19 manifestations on chest CT images.

Diagnosing lung diseases in CT images can offer valuable 

information for COVID-19 detection. However, manual 

contouring of lung infections requires skilled radiologists and 

considerable time and effort. Automated models have the 

potential to support radiologists in expediting auto-contouring 

for COVID-19 diseases in medical practices. As a result, the 

automated segmentation of COVID-19-infected tissues from 

chest CT images is vital for quantitative assessment. Due to 

the emergence of Artificial Intelligence (AI), various deep 

learning (DL) models have been developed for COVID-19 

chest CT image segmentation [6]. These models can segment 

the target Region-Of-Interest (ROI) into normal and infected 

lung regions. Bouchareb et al. [7] and Huang et al. [8] 

reviewed several AI-driven models for COVID-19 chest X-ray 

and CT image segmentation. 

Fung et al. [9] developed a self-supervised two-stage DL 

model for assisting rapid COVID-19 diagnosis. Voulodimos 

et al. [10] proposed a few-shot U-net model to segment 

COVID-19-infected regions in CT images. Ortiz et al. [11] 

introduced a multi-task multi-decoder segmentation network 

for predicting COVID-19 outcomes from chest CT images. 

Shan et al. [12] designed a modified 3D Convolutional Neural 

Network (CNN) by integrating V-Net and a bottleneck 

structure to segment multiple structures, including lung 

regions, lung lobes, and infected regions. On the other hand, 

automated and precise segmentation of the COVID-19-

infected region is still highly difficult due to the huge variation 

in size, shape, and distribution of lesions in chest CT images. 

It is tricky to differentiate multiple kinds of lesions. Also, a 

few lesions may have low contrast and irregularity in 

boundaries, resulting in degradation of the segmentation 

performance. To solve these problems, Yan et al. [13] 

developed a CNN-based cascading network to detect infected 

lung regions from chest CT images. Zhou et al. [14] developed 

the Multi-Scale Attention-based U-Net (MS-AUNet) model to 

segment the COVID-19 CT images. An attention strategy such 

as spatial and channel attention units was integrated into the 

U-Net to re-weight the feature representation spatially and

channel-wise to extract the rich contextual correlations for

better feature learning. Also, a residual unit with dilated

convolutions was employed to capture features at various
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scales. 

Moreover, the focal Tversky error was used to segment the 

small irregular regions in the CT images. Conversely, it was 

not satisfactory to segregate uncertain edges in the lung CT 

images. Also, related normal tissues that appear similar to 

diseased tissues in the CT images were segregated into 

infected areas. 

Therefore, in this article, a Marginal Space Deep Learning 

(MSDL) with MS-AUNet model is proposed to accurately 

segment normal and COVID-19-infected tissues from the 

chest CT images. The main contributions of this study are the 

following: 

• At first, the CT images are segmented by the MS-

AUNet into normal and diseased ROIs.

• Then, the obtained ROIs are fed to the MSDL, which

enables automated, non-rigid tissue segmentation of

COVID-19 CT images. This MSDL is developed by

combining the Sparse dynamic Deep neural Network

(SDeepNet) with Marginal Space Learning (MSL)

strategy as a boundary detector to automatically learn

dynamic sparse features from the given ROI in each

marginal space and detect a bounding box to localize

the target tissues.

• Moreover, the Active Shape Model (ASM) is

developed to learn the shape deformation and segment

the infected lung tissues from the ROIs of the chest CT

images accurately.

• Thus, a small variation between normal and COVID-

19-infected tissues in lung boundaries can be precisely

localized to improve the COVID-19 diagnosis.

The rest of this paper is arranged into the following sections: 

Section 2 discusses prior studies on the DL-based COVID-19 

CT and X-ray image segmentation models. Section 3 explains 

how the MS-AUNet-MSDL model works, while Section 4 

provides evidence of its performance. Section 5 describes the 

overall study and offers suggestions for new alternatives. 

2. LITERATURE SURVEY

AI-driven models have continually provided precise and 

reliable solutions in medical imaging applications. Recently, 

academics have been evaluating and quantifying chest X-rays 

or CT images using DL models to recognize and diagnose 

COVID-19. This section reviews the related works from the 

aspects of chest X-ray segmentation and chest CT image 

segmentation using DL models for COVID-19 diagnosis. 

2.1 Chest CT image segmentation using DL models for 

COVID-19 diagnosis 

Segmentation is a crucial process in the automated 

recognition and diagnosis of COVID-19, which provides the 

delineation of the ROIs, i.e., diseased areas, in the chest CT 

images for further analysis and quantification. Several models 

were developed for automated COVID-19 detection and 

diagnosis based on chest CT images. 

In the study [15], a Deep Neural Network (DNN) model 

called COVID-Rate was developed to segment lung 

irregularities related to COVID-19 from chest CT images. In 

this model, multi-dimension kernels and dilated residual units 

were integrated with the encoding route to offer dynamic 

receptive fields for feature mining. Also, a squeeze-and-

excitation unit was used to recalibrate channel-wise feature 

maps, and a context perception boosting unit was added in the 

encoding route to train multi-scale interpretations of COVID-

19 manifestations. Additionally, an unsupervised 

enhancement method was applied to enhance the model 

generalization. But, the considered CT images were 

constrained to partitioning lung lesions under a single category. 

In the study [16], a novel DCNN has been developed to 

segment chest CT images with COVID-19 diseases. In this 

model, a feature dissimilarity unit was added, which 

dynamically modifies the global features to identify COVID-

19 disease. Also, features at various scales were combined 

using the progressive Atrous spatial pyramid pooling to 

manage the complex disease regions having a variety of 

appearances and textures. But, the size of the dataset was 

limited and the images were manually interpreted, which takes 

more time. 

In the study [17], a multi-task semantic segmentation of the 

diseased chest CT images was presented using the residual 

network-based DeepLabV3+, which was restructured CNN 

framework. In this model, a pre-learned ResNet18 structure 

was utilized as a support to enhance the feature interpretation 

ability. But, the edge details regarding the ROI were missed so 

a tiny dimension of lesions in the boundary areas was not 

detected properly. 

In the study [18], a self-ensemble co-learning model has 

been developed to automatically capture COVID lesions from 

CT images. In this model, a co-learning model was applied to 

enrich the variety of unsupervised data by learning 2 distinct 

networks utilizing their estimated pseudo-tags of unannotated 

data. Also, a self-ensemble method was adopted to do 

consistency regularization for the current estimations of 

unannotated data, wherein the estimation of unannotated data 

was regularly ensemble by moving to the mean at the end of 

all learning epochs. However, the estimations of unannotated 

data were incorrect because of inadequate prior data, whereas 

the incorrect estimations were still included in the learning 

process. 

In the study [19], an efficient scheme depending on a deep 

adversarial network was developed to segregate the diseased 

areas from chest CT images automatically. Then, a 

segmentation-enabled categorization network was developed 

to diagnose COVID-19 by distinguishing them from other 

infections. Conversely, segregating a very tiny sample 

dimension in a specific category was problematic and a 

learning goal was not reliable. 

In the study [20], a new COVID-19 lung Infection 

segmentation deep Network (Inf-Net) model has been 

developed to automatically detect diseased areas from chest 

CT images. In this model, a parallel partial decoder was 

utilized to combine the high-level features and produce the 

global map. After that, implicit reverse attention and explicit 

edge attention were applied to model the edges and improve 

the interpretations. Also, a semi-supervised segmentation 

model was used according to the arbitrarily chosen 

propagation method to get an adequate number of labeled data 

and enhance the training efficiency. But the accuracy was 

slightly degraded for normal lung CT images since it focuses 

only on segmenting COVID-19-infected lung CT images. 

In the study [21], a voxel-level anomaly modeling network 

called NormNet has been developed to detect usual voxels 

from probable anomalies. In this model, a decision boundary 

for usual contexts of the NormNet was trained by segregating 

healthy tissues from various artificial lesions, which were 

utilized to partition COVID-19 lesions, without learning any 
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annotated data. But, the false positive was high in the 

Radiopedia dataset since it treats the unseen contexts as 

anomalies. Also, a tiny portion of lesions with intensity lower 

than the threshold value was not identified. 

In the study [22], an Anamorphic Depth (AD) embedding-

based lightweight CNN, namely, Anam-Net has been 

developed to segregate anomalies in COVID-19 chest CT 

images. In this model, the fully convolutional AD unit was 

constructed within the symmetric encoder-decoder model to 

enable effective gradient flow in the network. Also, an adapted 

tag weighting method was applied during learning, which 

creates the network more stable during the test stage. This 

model was biased to the lung’s exterior regions and most 

COVID-19 chest CT images contain signs of peripheral 

irregularities, yet such irregularities may be lacking in 

asymptomatic and pediatric patients, which results in a less 

dice similarity score. 

In the study [23], a Two-Stage Hybrid U-Net (TSH-UNet) 

has been developed for automatically segregating COVID-19 

diseased areas in CT images by capturing the features of 

various layers and completely exploiting context details. But, 

the segmentation error was high due to the limited database, 

which results in ineffective data diversity. Also, small lesions 

were integrally not simple to segregate and were complex for 

convolution processes to get the miniature features. 

In the study [24], an interactive Attention Refinement 

Network (Attention-RefNet) combined with the backbone 

segmentation network has been developed to improve the 

initial partition obtained from the backbone segmentation 

network such as U-net. Also, a skip path attention unit was 

used to extract the relevant features a seed point unit was used 

to improve the relevant seeds (locations) for interactive 

refinement. But, the edge between diseased and non-diseased 

regions was unclear. A few diseased regions were ignored, 

which affects the segmentation accuracy. 

In the study [25], a modified U-net called SD-UNet was 

developed for segmenting COVID-19 chest CT images by 

merging the Squeeze-and-Attention (SA) and Dense Atrous 

Spatial Pyramid Pooling (Dense ASPP). The SA was utilized 

to enhance the attention of pixel combination and completely 

use the global context features, enabling the system to capture 

the variances and correlations among pixels. The Dense ASPP 

was used to obtain multi-scale features of COVID-19 lesions. 

Also, preprocessing was applied to remove inappropriate 

background data and improve the COVID-19 lesion 

segregation. However, the predicted COVID-19 lesion 

contours were not adequately efficient because of an 

inadequate number of training samples. 

 

2.2 Chest X-ray image segmentation using DL models for 

COVID-19 diagnosis 

 

In the past few years, DL models have been used for 

analyzing chest X-ray images in a short duration. 

In the study [26], a threshold-based segmentation model 

was developed to quantity COVID-19 from chest X-ray 

images. But the sample size was very limited and also the 

accuracy may be impacted by the image quality. Also, it needs 

DL models to accurately segment and detect COVID-19 

infections. In the study [27], a reduced-size U-net 

segmentation model has been developed to segment lung 

regions by removing random noise and preserving the 

important information in the lung region. But this model was 

computationally expensive and case-specific. 

In the study [28], SegNet, U-net, and hybrid CNN with 

SegNet plus U-net were presented, which were optimized by 

the Grey Wolf Optimization (GWO) to detect and label 

COVID-19-infected lung lobes in chest X-ray images. But it 

may only provide approximate localization in chest X-ray 

images and networks may entirely fail to localize COVID-19-

infected regions when no ground truth masks were applied. In 

the study [29], a new framework was developed, which 

comprises COVID-19-infected region segmentation, infection 

map generation, and COVID-19 recognition. First, the chest 

X-ray image was given to the trained U-net and the network’s 

probabilistic prediction was used to create infection maps. 

Then, those infection maps were utilized for detecting normal 

and COVID-19 images. But it was computationally expensive 

due to the more parameters. 

In the study [30], a new model called DRR4Covid has been 

developed to train COVID-19 disease separation on chest X-

rays from Digitally Reconstructed Radiographs (DRRs). The 

disease-aware DRR producer was trained with pixel-level 

disease annotations from chest CT slices, to create disease-

aware DRRs with pixel-level annotations of diseased areas, 

which were further used for learning the segmentation network. 

Also, the domain adaptation unit was applied to allow the 

segmentation network learned on DRRs to generalize to chest 

X-rays. But, the analysis was incomprehensive because of 

inadequate chest X-rays with pixel-level annotations of 

diseased areas. 

In the study [31], a hybrid pipeline has been developed that 

comprises two modules for detecting COVID-19 from chest 

X-ray images. Module 1 such as a classical convnet was used 

to create masks of the lungs. Module 2 was a hybrid convnet, 

which preprocesses chest X-rays and corresponding lung 

masks using wavelet scattering transform. Then, the resultant 

feature maps were passed via attention and cascade of 

separable atrous multiscale convolutional residual units to 

classify healthy and COVID-19 images. But it may segment 

and classify lungs affected by other similar diseases like 

pneumonia as COVID-19 so the performance can be degraded. 

Having reviewed the related work, it is evident that despite 

the notable success of DL models in the detection of COVID-

19 from chest CT and X-ray images, abnormalities around the 

lung boundaries have not been explored explicitly. It is usual 

in medical imaging, particularly the datasets that have images 

with similar kinds of abnormalities (e.g., overlapping infected 

tissues in edges), which leads to degradation in model 

accuracy. Thus, this study focuses on dealing with accurately 

segmenting normal tissues analogous to infected tissues in the 

lung boundaries from the COVID-19 chest CT images. 
 

 

3. PROPOSED METHODOLOGY 

 

In this section, the presented MS-AUNet-MSDL model is 

explained briefly. This model has 2 major processes: COVID-

19-infected tissue localization and non-rigid edge prediction. 

For infected tissue localization, the MSDL is introduced, 

which manipulates the computational advantages of MSL and 

the automated, self-trained feature representation of DL. Also, 

an ASM is developed to guide edge prediction that 

distinguishes normal and abnormal lung tissues precisely. 

Figure 1 illustrates the block diagram of this study. The major 

processes in this work are the following: 

1. Initially, COVID-19 chest CT images are acquired 

from various sources. Then, those are segmented by 

the MS-AUNet to obtain the diseased and normal 
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lung ROIs by extracting features at multiple scales. 

2. After that, the diseased ROIs are further used to train 

the MSDL model, which localizes the COVID-19-

infected tissues using SdeepNet in marginal spaces 

and predicts the structural (edge) irregularities by the 

ASM to identify other normal tissues similar to 

COVID-19-infected tissues. 

3. Therefore, the trained model can be later applied to 

distinguish between normal and COVID-19-infected 

tissues in the lung ROIs for early detection and 

diagnosis of COVID-19. 

 

 
 

Figure 1. Block diagram of the proposed study 

 

3.1 Design of deep neural network 

 

In this study, the identification and segmentation processes 

are leveraged to a patch-wise categorization defined by the 

collection of 𝑝 parameterized input patches 𝑋⃗ (i.e., COVID-

19 chest CT images) with a matching collection of labels 𝑦⃗, 

declaring whether the required lung tissues are comprised in 

the patch or not. These inputs are handled by the inter-neural 

links called kernels under non-linear mappings in a 

representation training strategy to capture high-level feature 

interpretations. 

 

 
 

Figure 2. Illustration of fully connected DNN with 3 layers 

 

This study focuses on a fully connected neural network (as 

depicted in Figure 2) and defines that the filter dimensions are 

identical to the actual interpretation dimension. According to 

this fact, a deep fully connected DNN is described by the 

variables (𝜔⃗⃗⃗, 𝑏⃗⃗), where 𝜔⃗⃗⃗ = (𝜔⃗⃗⃗1, 𝜔⃗⃗⃗2, … , 𝜔⃗⃗⃗𝑛)⊤ is the variables 

of each 𝑛  fused kernel over the network layers, i.e. the 

weighted links between neurons and 𝑏⃗⃗  encodes the neuron 

biases. In this scenario, 𝑛  is the number of neurons in the 

network. 

To determine the activation of a specific random neuron, a 

linear mixture is calculated between the weights of every 

incoming link and the activations of every neuron from where 

the incoming links originate. The bias of this neuron is added 

to this value, which is converted by the nonlinear mapping to 

get the activation value. Mathematically, from the viewpoint 

of 𝑘𝑡ℎ  neuron in the network, its activation value 𝑜𝑘  is 

provided as: 

 

𝑜𝑘 = 𝛿(𝑥𝑘
⊤𝜔𝑘 + 𝑏𝑘) (1) 

 

In Eq. (1), 𝛿 is a non-linear activation function, 𝜔𝑘  is the 

weight of the incoming link, 𝑥𝑘 is the activations of the linked 

neurons from the preceding layer and 𝑏𝑘  is the neuron bias. 

When the neuron is an element of the initial layer, 𝑥𝑘  is 

provided by the voxel values, i.e. the input image. 

Moreover, the learning of DNN may be demonstrated that 

various functions associates with diverse training issues by 

focusing on the activation function 𝛿 , which is utilized to 

synthesize the input image. The sigmoid activation function is 

considered as 𝛿(𝑦) = 1
(1 + 𝑒−𝑦)⁄ . By representing the 

network response function as ℛ(∙; 𝜔⃗⃗⃗, 𝑏⃗⃗) , it is used to 

approximate the probability density function over the class 

labels, provided an input image: 

 

ℛ(𝑥(𝑖); 𝜔⃗⃗⃗, 𝑏⃗⃗) ≈ 𝑝(𝑦(𝑖)|𝑥(𝑖); 𝜔⃗⃗⃗, 𝑏⃗⃗), 1 ≤ 𝑖 ≤ 𝑚 (2) 

 

For the supervised configuration and the independence of 

the input samples, the Maximum Likelihood Elimination 

(MLE) scheme is applied to train the system variables for 

maximizing the likelihood function: 

 

(𝜔̂⃗⃗⃗, 𝑏⃗⃗
̂

) = argmax
𝜔⃗⃗⃗⃗,𝑏⃗⃗

ℒ(𝜔⃗⃗⃗, 𝑏⃗⃗; 𝑋⃗) =

argmax
𝜔⃗⃗⃗⃗,𝑏⃗⃗

∏ 𝑝(𝑦(𝑖)|𝑥⃗(𝑖); 𝜔⃗⃗⃗, 𝑏⃗⃗)𝑚
𝑖=1   

(3) 

 

In Eq. (3), 𝑚  is the number of learning examples. 

Alternatively, the system variables are estimated such that for 

each learning example 𝑥(𝑖) , the network estimates the 

maximum belief of its actual label 𝑦(𝑖) (1 ≤ 𝑖 ≤ 𝑚). This is 

equal to reducing a cost function 𝒞(∙)  measuring how 

efficiently the network estimation equals the projected result, 

i.e. the actual label. The 𝐿2  penalty function is utilized, 

resulting in minimizing the maximization issue described in (3) 

to the below minimization issue: 
 

(𝜔̂⃗⃗⃗, 𝑏⃗⃗
̂

) = argmin
𝜔⃗⃗⃗⃗,𝑏⃗⃗

[𝒞(𝑋⃗; 𝜔⃗⃗⃗, 𝑏⃗⃗) = ‖ℛ(𝑋⃗; 𝜔⃗⃗⃗, 𝑏⃗⃗) − 𝑦⃗‖
2

2
] (4) 

 

This is resolved by the Stochastic Gradient Descent (SGD) 

scheme. With an arbitrary collection of examples 𝑋̃ from the 

learning input, a feed-forward propagation is executed to 

determine the network response ℛ(𝑋̃; 𝜔⃗⃗⃗, 𝑏⃗⃗) . Representing 

𝜔⃗⃗⃗(𝑡)  and 𝑏⃗⃗(𝑡) , the system variables in the tth optimization 

stage, they are modified based on the below principle: 

 

𝜔⃗⃗⃗(𝑡 + 1) = 𝜔⃗⃗⃗(𝑡) − 𝜂∇𝜔𝒞 (𝑋⃗; 𝜔⃗⃗⃗(𝑡), 𝑏⃗⃗(𝑡)) (5a) 

 

𝑏⃗⃗(𝑡 + 1) = 𝑏⃗⃗(𝑡) − 𝜂∇𝑏𝒞 (𝑋⃗; 𝜔⃗⃗⃗(𝑡), 𝑏⃗⃗(𝑡)) (5b) 
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Here, ∇ is the gradient of the cost function for the system 

variables and η is the magnitude of the modification, i.e., the 

training rate. The backpropagation algorithm is utilized to 

determine the gradient through calculating 

∇𝜔𝒞 (𝑋⃗; 𝜔⃗⃗⃗(𝑡), 𝑏⃗⃗(𝑡))  and ∇𝑏𝒞 (𝑋⃗; 𝜔⃗⃗⃗(𝑡), 𝑏⃗⃗(𝑡))  layer-by-layer

from the final layer to the initial in a simple way, provided the 

series pattern of ℛ. For this purpose, 𝑋̃ is defined as a specific 

batch of examples. A single learning cycle is 1 full batch-wise 

iteration over the whole training images with a variable 

modification at every stage (refer to Eqs. 5(a) and 5(b)). This 

method requires several cycles to develop a robust network. 

But, guaranteeing the system robustness, learning and 

testing effectiveness is a difficult process. To solve this issue, 

the image sampling or characteristics mining process should 

be controlled under huge feature spaces and various scales. As 

a result, a new scheme for layer sparsification is introduced to 

increase the computational efficacy and prevent overfitting. 

Also, filter weights are removed when estimating the actual 

filter response. 

3.2 Design of sparse dynamic deep neural network 

Considering the complete network, a sparsity map 𝑠  is 

discovered for 𝜔⃗⃗⃗ , such that over 𝑇  learning cycles, the 

response residual 𝜖 is defined as: 

𝜖 = ‖ℛ(𝑋; 𝜔⃗⃗⃗, 𝑏⃗⃗) − ℛ(𝑋; 𝜔⃗⃗⃗𝑠, 𝑏⃗⃗𝑠)‖ (6) 

Eq. (6) is negligible, where 𝑏⃗⃗𝑠 is the biases of neurons in the

sparse network and 𝜔⃗⃗⃗𝑠 is the trained sparse weights calculated

using the sparsity map 𝑠  with 𝑠𝑖 ∈ {0,1}, ∀𝑖 . To do this, a

greedy, iterative training task is adopted by slowly dropping 

neural links, which slightly influence the system response 

(refer to Algorithm 1). 

Algorithm 1: Training SDeepNet with Iterative Threshold-

based Sparsity 

1. Begin

2. Pre-learning by every weight 𝜔⃗⃗⃗(0) ← 𝜔⃗⃗⃗  (minimum

number of iterations);

3. Initialize sparsity map 𝑠(0) with ones;

4. 𝑡 ← 1
5. 𝒇𝒐𝒓(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑡 ≤ 𝑇)
6. 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑓𝑖𝑙𝑡𝑒𝑟 𝑖 𝑤𝑖𝑡ℎ 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦)

7. 𝑠𝑖
(𝑡)

← 𝑠𝑖
(𝑡−1)

+eliminate the lowest active weights;

8. 𝜔⃗⃗⃗𝑖
(𝑡)

= 𝜔⃗⃗⃗𝑖
(𝑡−1)

⨀𝑠𝑖
(𝑡)

;

9. Regularize active coefficient subject to ‖𝜔⃗⃗⃗𝑖
(𝑡)

‖
1

=

‖𝜔⃗⃗⃗𝑖
(𝑡−1)

‖
1
;

10. 𝒆𝒏𝒅 𝒇𝒐𝒓

11. 𝑏⃗⃗(𝑡) ← 𝑏⃗⃗(𝑡−1);

12. 𝒆𝒏𝒅 𝒇𝒐𝒓

13. Sparse kernels: 𝜔⃗⃗⃗𝑠 ← 𝜔⃗⃗⃗(𝑇);

14. Biases: 𝑏⃗⃗𝑠 ← 𝑏⃗⃗(𝑇);

15. End

The pre-learning phase is developed to encourage a specific

degree of arrangement in the filters, before removing 

coefficients. This sparsity incorporation scheme is employed 

over a fixed number of 𝑇 learning cycles. In every cycle 𝑡, a 

ratio of the total lowest active weights of the considered filters 

is greedily chosen and the respected neural links are eternally 

eliminated from the network (assigned them to 0 with the 

modified mask 𝑠(𝑡). The actual response is estimated for any

considered filter 𝑖 by stabilizing its 𝐿1-norm. During the final

stage of all iterations, the supervised learning is repeated on 

the residual active links, directing the retrieval of the neurons 

from the missing data by reducing the actual network error 

value: 

(𝜔̂⃗⃗⃗(𝑡), 𝑏⃗⃗
̂(𝑡)) = argmin

𝜔⃗⃗⃗⃗:𝜔⃗⃗⃗⃗(𝑡)

𝑏⃗⃗:𝑏⃗⃗(𝑡)

𝒞(𝑋⃗; 𝜔⃗⃗⃗, 𝑏⃗⃗)
(7) 

In Eq. (7), 𝜔⃗⃗⃗(𝑡) and 𝑏⃗⃗(𝑡) (calculated from the values in the

cycle 𝑡 − 1) are utilized as primary values in the optimization 

process. According to this, this SDeepNet trains highly sparse 

characteristics using dynamic design. At the basic level, 

dynamic, sparse data characteristics are trained that explicitly 

reject input having less effect on the ℛ  while obtaining 

relevant characteristics in the input. 

In this system, the major aim is devoted to how many active 

weights are assigned to 0 in a single learning cycle. This value 

reduces with the learning cycles, particularly, in the final 

cycles of the learning exponentially fewer filter weights are 

assigned to 0. This makes sense because the fewer weights in 

a specific kernel, the more difficult it is for that kernel to 

restore after a new sparsity enforcement stage. Also, because 

the sparsity serves as normalization and lowers the possibility 

of overfitting during learning, this SDeepNet outperforms the 

standard DNN on test images. 

3.2.1 Theoretical relationship between proposed SDeepNet 

and traditional DL models 

The following criteria are used to highlight the significance 

of the SDeepNet in contrast to the conventional DL models for 

CT image segmentation in COVID-19 diagnosis. 

• Sampling layer: It is observed that the network

input is especially large in the CT images, for

instance, a 50 × 50 × 50 patch comprises 125000

input voxels. Even though the SDeepNet

manifestations only a small portion of voxels using

sparse, dynamic patterns with up to 95% sparsity,

the DNN manifestations all single input voxels

several times, proportionally to the size of the

convolution kernel. It accelerates the sampling for

the SDeepNet.

• Activation or dropout sparsity: The conventional

DL models did not consider the dropout or

normalization schemes, whereas the SDeepNet

includes the advantages of connection dropping

and activation sparsity by explicitly applying

sparsity in the system and directing the residual

neurons to deal with the lost connections. It serves

as normalization and decreases the possibility of

overfitting.

• Transformation invariance: If examining the input

space, all sparse patterns are invariant to the patch

position, and features are captured at any location

in the input.

• Kernel design: Regarding kernel pattern, both

sparse and dynamic kernels depend on local

relationships among voxels. The variation is that

the latter preserves the squared pattern in the

training phase, while the dynamic designs modify

the configuration by explicitly dropping

connections.
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3.3 Marginal space deep learning for SDeepNet 

The position of the required tissue is modeled by the 

bounding box represented by 6 variables: 𝑀⃗⃗⃗ = (𝑚𝑥, 𝑚𝑦) for

mapping, 𝑂⃗⃗ = (𝜙𝑥, 𝜙𝑦)  for orientation and 𝑆 = (𝑠𝑥 , 𝑠𝑦)  for

the morphology scaling of the lung. For a lung CT image 𝐼, the 

position of the desired tissue is found by increasing the 

posterior probability as: 

(𝑀̂⃗⃗⃗, 𝑂̂⃗⃗, 𝑆̂) = argmax
𝑀⃗⃗⃗,𝑂⃗⃗,𝑆

𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗, 𝑆|𝐼) (8) 

This probability is estimated by the SDeepNet ℛ(𝑋; 𝜔⃗⃗⃗𝑠, 𝑏⃗⃗𝑠),

where 𝜔⃗⃗⃗𝑠 and 𝑏⃗⃗𝑠  indicate the weight and bias vectors of the

sparse network. The enormous amount of assumptions, which 

increases exponentially with the size of the subspace, makes it 

impossible to examine the whole area of potential changes. It 

increases even with an extremely coarse partitioning of the 

input. So, the MSDL is adopted based on the MSL [32] and 

the SDeepNet model. Rather than extensively segmenting the 

whole 6D space, the segmentation is carried out in grouped, 

high-dimensional feature space, initiating in the location space 

and moving on to the location-orientation space before 

reaching the complete 6D space, which also includes the 

image's morphology scaling data.  

To achieve this, the actual optimization dilemma in Eq. (8) 

is redefined by factorizing the posterior probability: 

(𝑀̂⃗⃗⃗, 𝑂̂⃗⃗, 𝑆̂) =

argmax
𝑀⃗⃗⃗,𝑂⃗⃗,𝑆

𝑝(𝑀⃗⃗⃗|𝐼)𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗|𝐼)𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗, 𝑆|𝐼) =

argmax
𝑀⃗⃗⃗,𝑂⃗⃗,𝑆

𝑝(𝑀⃗⃗⃗|𝐼)
𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗|𝐼)

𝑝(𝑀⃗⃗⃗|𝐼)

𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗, 𝑆|𝐼)

𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗|𝐼)

(9) 

In Eq. (9), the probabilities 𝑝(𝑀⃗⃗⃗|𝐼), 𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗|𝐼)  and

𝑝(𝑀⃗⃗⃗, 𝑂⃗⃗, 𝑆|𝐼) are described in the prior computed spaces of

rising dimensionality known as marginal spaces. According to 

this, the issue of training predictors in those marginal spaces 

is prevented and every space is analyzed deeply to predict the 

location, orientation and scale of the infected tissue. This is 

feasible by formulating every training space as a collection of 

sample hypotheses, positives and negatives utilized for 

learning. For instance, after training the mapping variables in 

the mapping space 𝑈𝑀(𝐼), solely the positive hypotheses with

maximum probability, grouped in a dense area are augmented 

with discretized orientation data to create the mutual mapping-

orientation space 𝑈𝑀𝑂(𝐼). A similar rule employs if extending

to the complete 6D space 𝑈𝑀𝑂𝑆(𝐼). Mathematically, the phase-

wise optimization is described as: 

(𝑀̂⃗⃗⃗, 𝑈𝑀𝑂(𝐼)) ← argmax
𝑀⃗⃗⃗

ℛ(𝑈𝑀(𝐼); 𝜔⃗⃗⃗𝑠, 𝑏⃗⃗𝑠) (10a) 

(𝑀̂⃗⃗⃗, 𝑂̂⃗⃗, 𝑈𝑀𝑂𝑆(𝐼)) ← argmax
𝑀⃗⃗⃗,𝑂⃗⃗

ℛ(𝑈𝑀𝑂(𝐼); 𝜔⃗⃗⃗𝑠, 𝑏⃗⃗𝑠) (10b) 

(𝑀̂⃗⃗⃗, 𝑂̂⃗⃗, 𝑆̂) ← argmax
𝑀⃗⃗⃗,𝑂⃗⃗,𝑆

ℛ(𝑈𝑀𝑂𝑆(𝐼); 𝜔⃗⃗⃗𝑠, 𝑏⃗⃗𝑠) (10c) 

In Eqns. (10a) – (10c), ℛ(∙; 𝜔⃗⃗⃗𝑠, 𝑏⃗⃗𝑠)  is the result of the

SDeepNet, trained from the supervised learning image (𝑋⃗, 𝑦⃗). 

Similar processes are executed in the identification stage, 

utilizing a single CT image as input. This kind of method takes 

an acceleration of 3 orders of magnitude contrasted to the 

exhaustive search in the 6D space, depending on a dense 

discretization for all variables. Figure 3 depicts the schematic 

overview of the MSDL model. 

3.3.1 Effective hypotheses filtering 

A major efficiency of the training process in all marginal 

spaces are the high class imbalance. In parametric space, this 

is defined by the restricted range of feasible locations, 

orientations, or scales of the object of interest. This imbalance 

may increase to a proportion of 1: 1000 positive to negative 

examples, which has an effect on the effectiveness of learning 

as well as stochastic gradient sampling during training, leading 

to a bias in the predictor in favor of the overrepresented 

negative class. When over/undersampling schemes may be 

utilized. Conversely, re-weighting the cost function may 

increase the vanishing gradient impact and this kind of 

technique doesn’t solve the computing difficulties related to 

the interpretation like huge numbers of learning examples 

(especially, negative hypotheses). Additionally, the majority 

of such pessimistic theories can be categorized easily and 

exhibit traits that are essentially dissimilar from those of 

positive samples. Employing deep models with intricate 

properties to categorize these basic hypotheses could result in 

overfitting during learning, which would impair the classifier's 

ability in challenging situations. 

Figure 3. Schematic overview of MSDL model 
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So, an alternative strategy is adopted depending on a series 

of shallow neural networks, which are utilized to effectively 

select the negative hypotheses. At all levels, the SDeepNet is 

trained and its search space is adjusted to exclude several real 

negative hypotheses from the learning collection as feasible. 

Once the learning collection is balanced, the residual 

hypotheses, categorized as positives, are fed to the following 

levels, where a similar filtering method is used. Observe that 

at all levels, the actual collection of hypotheses utilized for 

learning is unstable (refer to Algorithm 2). It may guarantee 

that all batch of 𝐵 examples utilized to predict the gradient is 

stable, by separately and arbitrarily sampling 𝐵 2⁄  positives,

correspondingly negatives from the learning collection. 

With the help of this kind of series method demanding 

merely fundamental low-level characteristics to choose the 

example collection defines a crucial process towards a 

reasonable execution ability during learning and testing. 

Minimizing the dimension of the example collection analyzed 

by the primary predictor in all levels from |𝑁| + |𝑃| to almost 

3 × |𝑃| enhances the segmentation efficiency by an extra 2 

orders of magnitude according to the imbalance proportion. 

Algorithm 2: Negative Example Filtering Scheme 

1. Begin

2. Consider a collection of positive examples (𝑃)  and

negative examples (𝑁), where (|𝑃| ≪ |𝑁|);

3. 𝒘𝒉𝒊𝒍𝒆(|𝑁| ≥ 1.5 × |𝑃|)
4. Train shallow SDeepNet with the help of Algorithm 1;

5. 𝑑 ←the highest decision limit with a false negative rate

is 0;

6. Filter 𝑁 depending on 𝑑; //remove true negatives 

7. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆
8. End

3.3.2 Non-rigid edge prediction using active shape model for 

distinguishing related normal and COVID-19-infected tissues  

The automated tissue localization utilizing MSDL is 

followed in the second phase by the non-rigid edge prediction 

of the lung ROI. The ground-truth-based median morphology 

is calculated and matched to the predicted orientation before 

being bent to match the image edges. According to the actual 

image data, the ASM [33] is utilized for the non-rigid edge 

prediction. In this study, the SDeepNet (with negative filtering 

series) is introduced as an edge predictor to automatically train 

dynamic, sparse attribute sampling forms from low-level 

image information. 

The problem is to identify the edge point at location 𝑀⃗⃗⃗ =

(𝑚𝑥 , 𝑚𝑦) and orientation 𝑂⃗⃗ = (𝜙𝑥, 𝜙𝑦), which are provided

by the present example along the usual for the corresponding 

morphology. This is a segmentation issue and is resolved by a 

similar method utilized in the second phase, i.e. the mutual 

mapping-orientation training space of the MSDL model. For 

every step, positive examples are used on the present ground 

truth edge (matched with the relevant baseline) for learning, 

and negative examples are used at varying distances from the 

edge. To effectively use this predictor under random 

orientations and highlight significant tissue regions, sparse 

adaptive features are crucial. 

The edge prediction is followed by confining the distorted 

morphology to the feature space that matches the present 

image. A quantitative morphology modeling is used for the 

confinement, where the learning examples are predicted from 

the linear subspace via principal component analysis and the 

present morphology is projected into this subspace by the 

trained linear predictor. The procedure of edge prediction and 

morphology confinement are iteratively employed for a 

number of fixed iterations or until there are no significant 

abnormalities. 

Thus, this MS-AUNet-MSDL model can increase the 

efficiency of segmenting the lung regions and localizing the 

COVID-19-infected tissues in the CT images for appropriately 

diagnosing COVID-19 affected patients. 

4. EXPERIMENTAL RESULTS

In this part, the performance of the MS-AUNet-MSDL 

model is assessed by implementing it in MATLAB 2017b. 

Also, the efficiency is evaluated with the existing DL-based 

segmentation models such as MS-AUNet [14], Inf-Net [20], 

NormNet [21], Anam-Net [22], TSH-UNet [23], Attention-

RefNet [24], and SD-UNet [25] in terms of various metrics. 

4.1 Dataset 

In this experiment, the Radiopaedia-COVID-19 CT Cases-

2020 dataset [34] is considered. From this dataset, a total of 

760 COVID-19 chest CT images and 760 normal chest CT 

images. For training, 610 images from each class are 

considered and 150 images from each class are considered for 

testing. 

4.2 Visualization results of MS-AUNet-MSDL model 

From Figure 4, it is observed that the trained MS-AUNet-

MSDL can provide an accurate segmentation result when it 

segments infected tissues in small edge regions from the chest 

CT images. With the use of SDeepNet in marginal space and 

ASM, it can be viewed that the MS-AUNet-MSDL improves 

the segmentation results by learning shape abnormalities 

between normal and COVID-19 tissues in the lung boundaries. 

The MS-AUNet-MSDL can attain the output nearest to the 

ground truth and highly improve the COVID-19 segmentation 

performance. 

Input image 

(a) (b) (c) (d) 

Ground truth 

MS-AUNet 

MS-AUNet-MSDL 

Figure 4. Few examples of segmentation results for MS-

AUNet-MSDL and MS-AUNet models on COVID-19 chest 

CT dataset 
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Table 1 presents the confusion matrices for the different 

DL-based segmentation models on the considered test CT

images. This is used to calculate the performance of each

model in terms of DS, HD, recall, precision, and RMSE.

Table 1. Confusion matrix for different DL-based 

segmentation models during testing phase 

Models 
Detected Class 

Actual 

Class 0 1 

Inf-Net [20] 
0 108 39 

1 42 111 

NormNet [21] Actual 

Class 0 1 

0 110 37 

1 40 113 

Anam-Net 

[22] 
Actual 

Class 0 1 

0 112 35 

1 38 115 

TSH-UNet 

[23] 
Actual 

Class 0 1 

0 114 33 

1 36 117 

SD-UNet [25] Actual 

Class 0 1 

0 115 31 

1 35 119 

Attention-

RefNet [24] 
Actual 

Class 0 1 

0 117 30 

1 33 120 

MS-AUNet 

[14] 
Actual 

Class 0 1 

0 127 22 

1 23 128 

Proposed 

MS-AUNet-

MSDL 

Actual 

Class 0 1 

0 132 18 

1 18 132 
*Note: 0 – Normal; 1 – COVID-19.

4.3 Dice Score (DS) 

Its goal is to determine how closely categorization results 

and ground truth line up. The optimal solution has a higher DS. 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
2|𝑃∩𝑃̂|

|𝑃|+|𝑃̂|
(11) 

Figure 5. Comparison of dice score for proposed and 

existing DL-based COVID-19 segmentation models 

In Eq. (11), 𝑃 refers to the pixel collection of the desired 

ROIs (COVID-19-infected tissues), 𝑃̂  refers to the pixel 

collection of the infected ROIs segmented and categorized by 

the MS-AUNet-MSDL and |∙| denotes the pixel quantity. 

In Figure 5, the DS (in %) attained by various DL models 

used for lung CT image segmentation for COVID-19 

diagnosis. It scrutinizes that the DS of MS-AUNet-MSDL is 

18.18% greater than the Inf-Net, 16.04% greater than the 

NormNet, 13.83% greater than the Anam-Net, 11.29% greater 

than the SD-UNet, 10.2% greater than the TSH-UNet, 8.46% 

greater than the Attention-RefNet, and 3.82% greater than the 

MS-AUNet models. Thus, it realizes that the MS-AUNet-

MSDL model enhances the DS contrasted with all other 

models due to the localization of healthy and COVID-19-

infected tissues in the ROIs from the lung CT images. 

4.4 Hausdorff Distance (HD) 

It calculates the difference between the identified results 

and the ground truth and serves as a representation of the 

segmentation error. The HD of the ideal result is lower. 

𝐻𝐷 = max (𝑑(𝑃, 𝑃̂), 𝑑(𝑃̂, 𝑃)) (12) 

where 𝑑(𝑃, 𝑃̂) = max
𝑝∈𝑃

(min
𝑝∈𝑃̂

‖𝑝 − 𝑝̂‖) (13) 

𝑑(𝑃̂, 𝑃) = 𝑚𝑎𝑥
𝑝∈𝑃̂

(𝑚𝑖𝑛
𝑝∈𝑃

‖𝑝̂ − 𝑝‖) (14) 

In Eqs. (12) and (14), 𝑝 and 𝑝̂ indicate the pixels in 𝑃 and 

𝑃̂, correspondingly, ‖∙‖ denotes the Euclidean distance. 

Figure 6. Comparison of Hausdorff distance for proposed 

and existing DL-based COVID-19 segmentation models 

Figure 6 displays the HD (in mm) obtained by a variety of 

DL-based segmentation models used for COVID-19

identification and diagnosis. It indicates that the HD of MS-

AUNet-MSDL is 49.02% smaller than the Inf-Net, 47.37%

smaller than the NormNet, 46.13% smaller than the Anam-Net,

44.29% smaller than the SD-UNet, 42.61% smaller than the

TSH-UNet, 40.83% smaller than the Attention-RefNet, and

19.01% smaller than the MS-AUNet models because of

localizing the COVID-19-infected tissues in the ROIs from the

lung CT images.
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4.5 Recall 

It is computed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑃∩𝑃̂|

|𝑃|
(15) 

Figure 7. Comparison of recall for proposed and existing 

DL-based COVID-19 segmentation models

Figure 7 illustrates the recall (in %) attained by various DL 

models used for lung CT image segmentation for COVID-19 

diagnosis. It analyzes that the recall of MS-AUNet-MSDL is 

20.38% higher than the Inf-Net, 18.44% higher than the 

NormNet, 16.56% higher than the Anam-Net, 14.43% higher 

than the SD-UNet, 12.82% higher than the TSH-UNet, 

11.25% higher than the Attention-RefNet, and 3.53% higher 

than the MS-AUNet models. Thus, it realizes that the MS-

AUNet-MSDL model increases the recall compared to the 

other existing models for segmenting and localizing the 

COVID-19-infected lung tissues in the CT images. 

Figure 8. Comparison of precision for proposed and 

existing DL-based COVID-19 segmentation models 

4.6 Precision 

It is computed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑃∩𝑃̂|

|𝑃̂|
(16) 

Figure 8 illustrates the precision (in %) attained by various 

DL models used for lung CT image segmentation for COVID-

19 diagnosis. It observes that the precision of MS-AUNet-

MSDL is 15.21% higher than the Inf-Net, 13.45% higher than 

the NormNet, 11.75% higher than the Anam-Net, 10.23% 

higher than the SD-UNet, 9.16% higher than the TSH-UNet, 

8.23% higher than the Attention-RefNet, and 2.88% higher 

than the MS-AUNet models. Thus, it realizes that the MS-

AUNet-MSDL model increases the precision compared to the 

other models for segmenting and localizing the COVID-19-

infected lung tissues in the CT images. 

4.7 Root Mean Squared Error (RMSE) 

It is employed to gauge how precise the segmentation is. It 

is calculated based on the square root of the MSE value as 

follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ ∑ (𝒮̂𝑖𝑗 − 𝒮𝑖𝑗)

2
𝑗𝑖 × 100 (17) 

In Eq. (17), 𝑁  indicates the sum quantity of images, 𝒮̂ 

indicates the segmented image, 𝒮 indicates a real image and 

𝑖, 𝑗 denote pixels in the images. 

Figure 9. Comparison of RMSE for proposed and existing 

DL-based COVID-19 segmentation models

Figure 9 portrays the RMSE (in %) obtained by a variety of 

DL-based segmentation models used for COVID-19

identification and diagnosis. It indicates that the RMSE of MS-

AUNet-MSDL is 20.29% less than the Inf-Net, 19.15% less

than the NormNet, 17.99% less than the Anam-Net, 16.48%

less than the SD-UNet, 15.24% less than the TSH-UNet,

13.64% less than the Attention-RefNet, and 9.16% less than

the MS-AUNet models because of localizing the COVID-19-

infected tissues in the ROIs from the lung CT images.

5. CONCLUSION

In this study, the MS-AUNet-MSDL model was developed 
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to localize normal and COVID-19-infected tissues in the lung 

CT images. Initially, COVID-19 and normal chest CT images 

were obtained. After that, the MS-AUNet was used to segment 

the COVID-19-infected ROIs, which were further refined by 

the MSDL model. The MSDL using SDeepNet with MSL and 

ASM can predict the bounding boxes and shape abnormalities 

to accurately localize the healthy and COVID-19-infected 

tissues in the lung boundaries. The experimental outcomes of 

the MS-AUNet-MSDL model using the chest CT image 

dataset proved that it achieved 88% recall, 89.4% precision, 

and 89.7% DS, 11.42mm HD, and 22.8% RMSE contrasted 

with the existing variants of UNet models for COVID-19 

detection. 

Thus, this model can reduce the segmentation error and 

enhance the efficiency of COVID-19 diagnosis. It can be used 

by radiologists to detect COVID-19 infection from chest CT 

images and provide an appropriate diagnosis early to recover 

patients. However, more important discriminatory features 

were essential to categorize infection levels because 

quantifying infected tissues in the lung areas was not often 

achieve satisfactory solutions. Hence, future work will focus 

on classifying different stages of infection with the aid of more 

discriminative features from the chest CT images. 
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