
Implementation of a Numerical Model for the Prediction of Aeration in Mechanical Systems 

Marco Nicola Mastrone , Franco Concli*

Faculty of Engineering, Free University of Bolzano/Bozen, Piazza Università 1, Bolzano 39100, Italy 

Corresponding Author Email: franco.concli@unibz.it 

https://doi.org/10.18280/ijcmem.110201 ABSTRACT 

Received: 21 April 2022 

Accepted: 10 April 2023 

Aeration refers to the air entrapment in a second fluid. In mechanical transmissions (as 

gearboxes and turbines) it affects the reliability of the system by reducing its performance 

and leading to early failure of the components. Air bubbles decrease the effectiveness of 

the lubricant by directly impacting on its heat transfer capabilities. The analysis of aeration 

in gearboxes is traditionally based on experiments, which require niche equipment for its 

evaluation. The last decade has been characterized by huge improvements in the field of 

numerical calculus and computer technology. These led to the implementation of 

sophisticated virtual models capable of reproducing complex multiphase operating 

conditions. In the present work, Computational Fluid Dynamics (CFD) was exploited to 

study the effect of a new solver (implemented in the OpenFOAM® framework) that 

considers aeration. The solver was used for the simulation of a real gearbox in which 

aeration was observed. The results were analysed qualitatively in terms of amount of 

increase of the lubricant mixture volume, and quantitatively in terms of power dissipation 

estimation. The promising outcomes of this analysis suggests that this tool can be possibly 

exploited to have a deeper insight in the aeration phenomenon. 
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1. INTRODUCTION

Simulation tools are nowadays used both in academia to 

perform research activities and in industries for the 

development of new products. The benefits in terms of cost 

and time reduction with respect to physical prototypes make 

these tools particularly appreciated by engineers. The virtual 

modeling phase requires a deep knowledge of the physics 

involved in the investigation in order to make the correct 

assumptions and to apply the proper boundary conditions. 

Multiphase problems are usually complex to be handled 

numerically because of the necessity to consider more fluids 

at the same time and to manage the interface among them. 

Being able to treat them correctly is fundamental to study 

typical engineering applications as hydraulic systems and 

lubrication of components. Physical processes as cavitation 

and aeration cannot be modelled with default multiphase 

solvers. These usually cause excessive noise, premature 

failures, and efficiency reductions. The inclusion of such 

phenomena in the virtual model requires to integrate the code 

by adding a source term in the conservation equation that 

accounts for the multiphase problem.  

In particular, aeration has still not been considered in the 

numerical analysis of mechanical systems as geared 

transmissions. On the other hand, several works dealing with 

multiphase solvers, both mesh-based [1-18] and mesh-less 

[19-24], and cavitation simulations [25-30] can be found in 

literature. Pioneering studies on aeration in mechanical 

components can be found in the study [31], where the authors 

analysed the aeration in tapered roller bearings with 

experimental and numerical investigations. The adoption of a 

solver for capable of considering aeration can bring significant 

benefits in the numerical analysis of this phenomenon, that 

diminishes the performance of the lubricant as a consequence 

of the lower heat transfer capabilities and efficiency reduction. 

Since the experimental investigation of aeration in 

gearboxes requires advanced measuring techniques [32, 33], 

numerical methods could offer a good solution to analyze this 

problem with simulation codes. Cerne et al. [34] introduced an 

interface tracking algorithm based on a two-fluid model 

formulation [35]. An extension of the previous model for three 

fluids was proposed by Yan and Che [36]. A combination of 

Eulerian approach and Volume of Fluid (VOF) was tested by 

Wardle and Weller [37]. Ma et al. [38] reformulated the source 

term proposed by Sene [39] by including the turbulent 

intensity in their model and tested it on different test cases [40-

42]. Several investigations have considered plunging jet [43-

46] because of the typical air bubbles generation at free surface.

In this work, (an extension of the results presented at a

conference [47]) a solver that considers aeration implemented

in OpenFOAM® [48] is applied to a gearbox to predict the

level of aeration based on the foaming effects. The results

indicate that this solver may represent a good choice to study

the aeration phenomenon numerically and may be a good

solution if the real prototypes do not allow an easy

experimental analysis.

2. MATERIALS AND METHODS

2.1 Mathematical description 

For the analyzed case, the simulations were considered 

isothermal. Therefore, the energy equation was not activated, 
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and the conservation equations of mass and momentum were 

solved by the CFD code (Reynolds Averaged Navier-Stokes - 

RANS for incompressible not-stationary flow):  
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The term τij is the unresolved term and can be written taking 

advantage of the eddy viscosity (μt) hypothesis: 
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Turbulence is modeled according the RNG k-ε model: 
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Since these equations are valid only in monophasic 

simulations, a third conservation equation is added for two 

fluids. The VOF model [49] is used. The equation of the 

volumetric fraction (percentage of one fluid in every cell of the 

domain) is:  

 
𝜕𝛼

𝜕𝑡
+ 𝛻( 𝛼𝒖) = 0  (7) 

 

A generic physical property Θ (like viscosity and density) 

of the two fluids is used to describe an equivalent fluid such 

that:  

 

Θeq  = Θ1 ∙ 𝛼 + Θ2 ∙ (1 − 𝛼)  (8) 

 

The value of α can assume values between 0 and 1. In order 

to guarantee a bounded solution, the compressive scheme 

MULES (Multidimensional Universal Limiter with Explicit 

Solution) [50] was used. The MULES improves the interface 

resolution by the addition of the relative velocity uc that, by 

acting perpendicularly to the interface, estimates the relative 

velocity between fluids. The equation of 𝛼 becomes:  

 
𝜕𝛼

𝜕𝑡
+ 𝛻(𝛼𝒖) + 𝛻(𝒖𝒄𝛼(1 − 𝛼)) = 0  (9) 

 

The further addition of a source term to the right part of the 

equation (Sg) permits to include also physical phenomena as 

aeration and cavitation:  

 
𝜕𝛼
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In this work, aeration is modelled according to Hirt [51]. In 

this model, the source term is given as an explicit term in the 

α equation:  

𝑆𝑔 = 𝐶𝑎𝑖𝑟 𝐴𝑆√2
𝑃𝑡−𝑃𝑑

𝜌
  (11) 

 

where, Cair is a calibration parameter, AS the free surface area 

at each cell, ρ is the fluid density, and Pt (turbulent forces) and 

Pd (stabilizing forces) are given by: 

 

𝑷𝒕 = 𝜌𝑘 (12) 

 

𝑷𝒅 = 𝜌𝒈𝒏𝐿𝑇 +
𝝈

𝐿𝑇
  (13) 

 

where, gn is the component of the gravity normal to the free 

surface, σ is the surface tension, and LT is the turbulence 

characteristic length scale, expressed as: 
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According to Eq. (11), when Pt>Pd an air volume is added 

to the cell in question. The coefficient of proportionality Cair 

in the equation of the source term is set to 0.5. This value was 

used by Hirt for many test cases, and he concluded that this 

value can be reasonable for most of the applications, as on 

average it can be assumed that air will be entrapped over about 

half the surface area. 

 

2.2 Solver settings 

 

The PIMPLE algorithm was adopted to solve the transient 

simulations. Two correctors of the pressure equation were 

imposed to maintain the stability of the solution. A 

convergence criterion of 1e-6 was imposed to all field’s 

variables. The PCG (Preconditioned Conjugate Gradient) 

solver was used for the pressure. The velocity was solved with 

the PBiCG (Stabilized preconditioned bi-conjugate gradient). 

The timestep was set to achieve a maximum courant number 

of 1. The time derivative was discretized with the first order 

implicit Euler scheme, while the velocity with the second 

order linearUpwind scheme and the convection of the 

volumetric fraction with the vanLeer scheme. The turbulence 

quantities were discretized with the second order 

linearUpwind scheme. 

 

 

3. RESULTS 

 

In order to study the new solver that considers aeration, 

firstly, a simple benchmark case consisting in a vertical 

plunging jet is considered; secondly, a gearbox is analysed 

with a standard multiphase solver and the new implemented 

one to investigate the capability to estimate the aeration level. 

Lastly, the velocity field of a tapered roller bearing was 

compared with experimental measurements with both solvers. 

The results indicate that a better physical representation can be 

obtained with the new solver capable of modelling the 

entrapment of air in liquid phase.  

 

3.1 Vertical plunging jet 

 

The gradients of velocity that originate at the free surface 

causes in most cases aeration. For this reason, a vertical 

plunging jet was considered the most appropriate test case to 

validate the new numerical solver. The problem consists of a 
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square box with dimensions 600×600 mm2 filled with water 

for an area of 500×500 mm2. The domain is discretized with 

quad elements. The water jet has an ejection velocity of 0.4 

m/s. 

In Figure 1, it is possible to appreciate the difference of the 

flow characteristics between a standard multiphase solver and 

the one that considers aeration. While on the left-hand side the 

interface between the two fluids is sharp (standard solver), on 

the right-hand side it appears smooth, indicating a high 

concentration of air in that region. The qualitative analysis 

based on the water fluxes suggests that this solver can model 

the air entrapment.  

 

 
 

Figure 1. Detail of the free surface water-air (standard vs 

aeration solver) 

 

3.2 Single rotating gear 

 

A rotating gear is considered as a direct application of the 

implemented solver to quantify the level of aeration in a real 

operating condition. The wheel’s parameters are reported in 

Table 1.  

 

Table 1. Wheel’s design parameters 

 
 Unit Wheel 

Number of teeth - 24 

Module mm 4.5 

Face width mm 14.0 

Pitch diameter mm 109.8 

 

The domain was discretized with triangular prisms (Figure 

2). Firstly, a 2D partition of the gearbox was meshed. The 

global 3D mesh was then obtained by extruding the 2D grid in 

the two axial directions. The sliding mesh approach was used 

to simulate the gear’s rotation: the region surrounded by a 

cylinder is assigned as “dynamic”, while the rest of the box as 

“static”. In this way, the dynamic cells can rotate and slide 

along the static cells. The definition of an interface allows the 

numerical connection between the two regions even in case the 

nodes are not conformal during the dynamic motion. 

The gearbox was filled with oil at centreline level. The oil 

has a kinematic viscosity of 𝜈40°𝐶 = 22
𝑚𝑚2

𝑠
 and a density of 

𝜌40°𝐶 = 900
𝑘𝑔

𝑚3. The gear rotates with an angular velocity of 

3000 rpm. In this condition, the lubricant showed an aeration 

level of about 10% experimentally [52]. In order to estimate 

the aeration level experimentally, the wheel’s rotation was 

slowed down to zero so that the mixture could drop. It is 

expected that the level of the mixture will be higher due the air 

entrainment in the lubricant. Similarly to experiments, the 

gear’s velocity was slowed down to zero after the physical 

regime condition, so that the mixture could fall, and the 

aeration level could be estimated in the virtual model. In 

Figure 3 the comparison between experimental and the 

simulation mixture’s level is illustrated. It can be noticed that 

air entrapment at free surface is predicted by the simulation in 

form of foaming effects, resulting in a comparable aeration 

level with respect to experiments. The values of 𝛼 have been 

divided in 3 ranges: from 0 to 0.33 (pure oil), from 0.33 to 0.66 

(oil and foaming effects), from 0.66 to 1 (pure air). The plotted 

lubricant level ranges therefore from 0 to 0.66 in order to 

account for the possible foaming effects. 

 

 
 

Figure 2. Numerical mesh. The static and the dynamic mesh 

are connected by an interface 

 

The analysis on the power dissipation showed that aeration 

promotes an increase of the losses, in accordance with 

literature [53-55]. In particular, at the investigated operating 

condition the aerated configuration exhibited about 5% 

increase in the power losses with respect to the non-aerated 

configuration. This is due to the increasing energy at the 

interface between air bubbles and lubricant that promotes a 

higher power dissipation. 

 

3.3 Tapered roller bearing 

 

The default and the new solver were used to study the 

velocity field of a tapered roller bearing 32312-A (whose 

design can be found in the study [56]) and the results compared 

with experimental data. In order to enable to optical access for 

the PIV measurements, a sapphire outer ring was 

manufactured instead of a classic steel component. By doing 

so, a laser light could access the bearing radially and the 

images could be acquired by two cameras. The bearing was 

completely submerged by the lubricant, which was seeded 

with fluorescent polystyrene particles. The target domain of 

the measurements lies in the plane region between two rollers. 

The cyclic symmetry of the bearing was exploited, thus only 

a sector was modelled. A fully hexahedral mesh with about 

800k cells was generated (Figure 4). 
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Figure 3. Aeration level: Experimental-simulation comparison 

 

 
 

Figure 4. Numerical mesh with a detailed view near the 

roller 

 

A rigid mesh motion was applied to the whole domain. The 

speed of the rings was defined by adjusting the velocities in 

the rotating reference frame, while the rotation of the roller 

around its own axis was considered by implementing a 

dedicated boundary condition. In Figure 5 the velocity contour 

and vectors representing the kinematics of the different 

components is reported. 

 

 
 

Figure 5. Velocity contour and vectors of the different 

patches 

The rotational speed of the cage is 2000 rpm. At this 

velocity, experimentally it was observed that aeration occurs. 

The lubricant has a kinematic viscosity of 𝜈25°𝐶 = 21
𝑚𝑚2

𝑠
 and 

a density of 𝜌25°𝐶 = 870
𝑘𝑔

𝑚3 . In Figure 6 the comparison 

between PIV measurements and numerical results (no aeration 

and aeration solver) is presented. 

 

 
 

Figure 6. PIV vs CFD (no aeration) vs CFD (aeration) 

velocity field 

 

From experiments, a high velocity region on the right part 

of the target domain is present. While the simulation with the 

solver that does not consider aeration leads to a high velocity 

region on the left part of the target domain in contrast with 

experiments, the solver that considers aeration provides results 

in agreement with measurements. The default solver is not 

capable of reproducing the aeration phenomenon and the 

related flow field correctly.  

 

 

4. CONCLUSIONS 

 

Nowadays, the design of mechanical systems is increasingly 

accompanied by numerical studies to have a deeper insight on 

the systems’ behaviour. In this sense, CFD codes can be used 

to analyse multiphase operating conditions, which usually 

require specific prototypes and equipment to obtain data. In 

this work, the opensource software OpenFOAM® was used to 

implement a solver capable of modelling the aeration 

68



 

phenomenon. The preliminary test on a vertical plunging jet 

allowed to study a simple case in which aeration usually 

occurs. The good physical representation of this problem 

suggested the extension of the application of this solver to 

mechanical systems. Indeed, a single gear rotating at high 

speed was simulated, and the results were compared with 

experimental data in terms of aeration level. The qualitative 

analysis shows that air is added at free surface, resulting in an 

increase level of the mixture’s volume due to the foaming 

effects given by the air entrapment. Moreover, the solver was 

exploited to study a tapered roller bearing, demonstrating its 

capability to reproduce the experimentally measured velocity 

field with respect to the default solver, which led to completely 

wrong predictions. The good agreement of the new 

implemented solver with respect to experiments indicate this 

tool being appropriate for an estimation of fluid’s 

comportment and the efficiency of the considered system in 

case of aeration. 
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