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In this study, a hybrid method combining the homotopy perturbation method (HPM) 

and Fourier transform (FT) is developed and denoted as FT-HPM. This novel algorithm 

leverages the properties of convolution theory to facilitate calculations and is applied to 

obtain approximate analytical solutions for the two-dimensional natural convection 

between two concentric horizontal circular cylinders maintained at various uniform 

temperatures. The effects of Rayleigh number, Prandtl number, and radius variation on 

the fluid flow (air) and heat transfer are investigated. Furthermore, velocity distributions 

are examined and discussed, while the Nusselt number is calculated to represent local 

and general heat transfer rates through the relevant Nusselt numbers. The convergence 

of the FT-HPM method is discussed theoretically, with the formulation of theorems that 

are applied to the results of the obtained solutions. Tables and graphs of the analytical 

solutions demonstrate the feasibility and potential usefulness of the proposed algorithm 

for addressing various nonlinear problems, particularly natural convection problems. 

This research contributes to the understanding of natural convection in complex 

geometries and provides a foundation for future studies in this field. 
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1. INTRODUCTION

In recent years, the study of heat transfer theory due to 

natural convection has garnered significant interest among 

scientists and engineers, owing to its crucial applications in 

various scientific and technological fields. These applications 

encompass heat storage systems, cooling of electronic 

components, solar collectors, nuclear reactors, and aircraft 

cabin insulation, among others [1-3]. One particularly 

important problem in natural convection, which has intrigued 

numerous researchers, involves the phenomenon between two 

concentric horizontal circular cylinders maintained at varying 

uniform temperatures. 

Early contributions to this area include the experimental 

solutions provided by Crawford and Lemlich [4], who 

conducted a numerical study to approximate the steady-state 

differential equations with suitable difference equations. Their 

work explored the effect of diameter ratios at 2, 8, and 57, in 

the case of a Prandtl number of 0.7. Subsequent researchers 

have built upon this foundation, developing numerical and 

analytical solutions to the problem. For instance, Mack and 

Bishop [5] performed an analytical investigation of natural 

convection between two horizontal circular concentric 

cylinders with small temperature differences. Their approach 

utilized Rayleigh number power series to solve the governing 

mathematical equations, and they discussed the characteristics 

of their solutions, such as local and global heat transfer rates, 

streamline formation, velocity, and temperature distributions. 

Additionally, they analyzed the effects of radius ratio, Prandtl 

number, and Rayleigh number. 

Kuehn and Goldstein [1] employed the finite difference 

method in a numerical study to obtain experimental solutions 

for natural convection between two horizontal circular 

concentric cylinders. Tsui and Tremblay [6] conducted a 

theoretical-numerical study for Grashof numbers ranging from 

7×102 to 9×104, with a fixed Prandtl number of 0.7, and 

diameter ratio differences of 1.2, 1.5, and 2. Pop et al. [7] 

derived analytical solutions for transient natural convection 

between two concentric horizontal circular porous cylinders 

using the method of matched asymptotic expansions. Their 

approach divided the problem into three regions (inner 

boundary layer, core region, and outer boundary layer) and 

determined the analytical solutions for each region separately. 

They observed that their solutions markedly differed from 

steady-state solutions. 

Sano and Kuribayashi [8] studied transient natural 

convection around a horizontal circular cylinder using the 

method of matched asymptotic expansions, resulting in new 

analytical solutions. Their research aimed to fill a gap in 

previous work by considering the displacement effect. Hassan 

and Al-Lateef [9] presented a numerical study to find the 

solution for two-dimensional transient natural convection heat 

transfer from isothermal horizontal cylindrical annuli. They 

employed the alternating direction implicit (ADI) method to 

solve both the vorticity and energy equations, while the stream 

function equation was solved using the successive over 

relaxation (SOR) method. Their results were summarized by 

Nussult number versus Grashof number curves, with diameter 

ratios and Prandtl number as parameters. Touzani et al. [10] 

numerically investigated natural convection in horizontal 

annulus with two heating blocks, noting that heat transfer was 

more significant in the upper region of the annulus and that the 

presence of the block improved overall heat transfer. Al-Saif 

and Al-Griffi [11] proposed a new algorithm that combined 
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the homotopy perturbation method and the Yang transform to 

conduct an analytical study on the problem of two-

dimensional transient natural convection between two 

concentric horizontal cylindrical annuli. Their work explored 

the effects of Grashof and Prandtl numbers, as well as the 

radius ratio, on heat transfer and fluid flow (air) at various 

values. 

Despite the merits of the aforementioned methods and their 

capacity to find numerical and analytical solutions for non-

linear problems, particularly in the context of heat transfer by 

natural convection, several challenges persist. These include 

high computational operations, time-consuming procedures, 

and the difficulty of using integral transformations (such as 

Laplace transform, Fourier transform, and Yang transform) to 

solve non-linear problems. To address these limitations, this 

study proposes a new algorithm combining the homotopy 

perturbation method (HPM) with the Fourier transform (FT), 

supported by the convolution theory, to create a hybrid 

procedure denoted as FT-HPM. This method leverages the 

convolution theory to reduce computational complexity 

related to integrative operations when using the homotopy 

perturbation method alone while also mitigating the difficulty 

of employing the Fourier transform to solve non-linear 

differential equations. The newly developed FT-HPM 

algorithm is applied to obtain approximate analytical solutions 

for the two-dimensional natural convection between two 

horizontal concentric cylinders. Tabular and graphical results 

of the new analytical approximate solutions demonstrate the 

usefulness, importance, and necessity of using this method. 

The accuracy and efficiency of this approach are validated by 

its agreement with the results of previous methods [10, 12, 13]. 

Furthermore, the convergence analysis of the solutions is 

studied both theoretically and experimentally by proving two 

theorems and deducing the necessary condition for the 

convergence of the method. The study also investigates the 

effect of Grashof number, Prandtl number, and radius ratio on 

the heat transfer and fluid flow in the annular space. 

2. THE IDEA OF HOMOTOPY PERTURBATION

METHOD

In 1988, He [14, 15] created the homotopy perturbation 

method (HPM). This method is considered highly effective 

and efficient in its ability to find solutions for linear and non-

linear differential and integral equations. This method is 

characterized by its ability to solve many non-linear problems 

that have wide applications in various sciences and 

engineering. In this method, the solution can be considered as 

a summation of a convergent infinite series [16]. To provide a 

completed explanation of the idea of this method, we have to 

consider the general form of a non-linear differential equation: 

𝐴(𝑢) − 𝑞(𝑟) = 0, 𝑟 ∈ 𝛺 (1) 

subject to the following boundary conditions, 

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ (2) 

where, A refers to a general differential operator, u  represents 

the unknown function, q(r) is a known analytic function, B 

denotes to the boundary operator, and Γ is the boundary of the 

domain Ω. The operator A can be divided into two operators, 

L and N, where L and N are a linear and non-linear operator, 

respectively. Moreover, Eq. (1) can be reformulated as follows: 

𝐿(𝑢) + 𝑁(𝑢) − 𝑞(𝑟) = 0 (3) 

By the idea of the homotopy perturbation method, we 

assume a homotopy 𝑈(𝑟, 𝑝): 𝛺 × [0,1] ⟶ ℝ, which satisfies 

the following formula: 

𝐻(𝑈, 𝑝) = (1 − 𝑝)[𝐿(𝑈) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑈) −
𝑞(𝑟)] = 0  

(4) 

Or 

𝐻(𝑈, 𝑝) = 𝐿(𝑈) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) + 𝑝[𝑁(𝑈) −
𝑞(𝑟)] = 0  

(5) 

where, 𝑝 ∈ [0,1] denotes the impeding parameter and u0 is an 

initial condition for the solution of Eq. (1), which satisfies the 

boundary conditions. Clearly, from Eq. (4) or Eq. (5), we will 

get: 

𝐻(𝑈, 0) = 𝐿(𝑈) − 𝐿(𝑢0) = 0,

𝐻(𝑈, 1) = 𝐴(𝑈) − 𝑞(𝑟) = 0.
(6) 

Therefore, the solution of Eq. (4 ) or Eq. (5) can be 

expressed as a power series in terms of p by the following: 

𝑈 = ∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0 (7) 

Putting p=1, then the approximate solution of Eq. (1) can 

be expressed as follow: 

𝑢 = lim
𝑝→1
𝑈 = ∑ 𝑈𝑗

∞
𝑗=0 (8) 

3. FUNDAMENTAL ALGORITHM OF FT-HPM

The main idea in this part is to improve the homotopy 

perturbation method by using the Fourier transform to get a 

new, more advanced procedure. To introduce the basic 

algorithm for this procedure, we rewrite Eq. (1) to get the 

following formula: 

𝐿(𝑈) + 𝑅(𝑈) + 𝑁(𝑈) = 𝑞(𝑟) (9) 

where, 𝐿 = 𝜕𝑛 𝜕𝑟𝑛⁄  represents to the linear differential

operator, R and N refer to the linear differential operator such 

that its order is less than L, the general non-linear differential 

operator, respectively, and q(r) denotes the source term. 

Moreover, the main steps of this method can be stated as 

follows: 

By using the HPM, we have: 

(1 − 𝑝)[𝐿(𝑈) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑈) − 𝑞(𝑟)] = 0 (10) 

Postulate that A(U)=L(U)+R(U)+N(U) and 𝐿 =
𝜕𝑛

𝜕𝑟𝑛
, then, 

we deduce: 

𝜕𝑛

𝜕𝑟𝑛
(𝑈) =

𝜕𝑛𝑢0

𝜕𝑟𝑛
− 𝑝

𝜕𝑛𝑢0

𝜕𝑟𝑛
− 𝑝[𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)] (11) 

By the effect of the Fourier transform on both sides of the 

Eq. (11), we get: 

887



 

ℱ [
𝜕𝑛

𝜕𝑟𝑛
(𝑈)] = ℱ [

𝜕𝑛𝑢0

𝜕𝑟𝑛
] − 𝑝ℱ [

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) +

[𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)]
]  (12) 

 

where, ℱ[𝑔(𝑡)] = ℱ(𝜔) = ∫ 𝑔(𝑡)𝑒−𝑖𝜔𝑡
∞

−∞
𝑑𝑡. 

Using the differentiation property of the Fourier transform, 

we obtain: 

 

(𝑖𝜔)𝑛ℱ[𝑈] = ℱ [
𝜕𝑛𝑢0

𝜕𝑟𝑛
− 𝑝(

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) +

[𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)]
)]  (13) 

 

The rearrangement of Eq. (13) leads to: 

 

ℱ[𝑈] =
1

(𝑖𝜔)𝑛
ℱ [
𝜕𝑛𝑢0
𝜕𝑟𝑛
− 𝑝(

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) +

[𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)]
)]  (14) 

 

according to the properties of the Fourier transform, we get: 

 

ℱ[𝑈] =

{
 
 

 
 

1

2(𝑛−1)!
ℱ[𝑟𝑛−1𝑠𝑔𝑛(𝑟)] ×

ℱ [

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) −

𝑝 (
𝜕𝑛

𝜕𝑟𝑛
(𝑢0) + [𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)])

]

}
 
 

 
 

  (15) 

 

where, ℱ(𝑡𝑛𝑠𝑔𝑛(𝑡)) = (−𝑖)𝑛+1
2(𝑛!)

𝜔𝑛+1
. 

Applying the idea of convolution theory on the right-hand 

side of the Eq. (15) to get the following result: 

 

ℱ[𝑈] = ℱ

{
 
 

 
 

1

2(𝑛−1)!
[𝑟𝑛−1𝑠𝑔𝑛(𝑟)] ∗

[

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) −

𝑝 (
𝜕𝑛

𝜕𝑟𝑛
(𝑢0) + [𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)])

]

}
 
 

 
 

  (16) 

 

where, the operation * is given by: 

 

𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑡 − 𝜂)𝑔(𝜂)𝑑𝜂
∞

−∞
≡ ∫ 𝑓(𝜂)𝑔(𝑡 − 𝜂)𝑑𝜂
∞

−∞
 

and ℱ[𝑓(𝑡) ∗ 𝑔(𝑡)] = ℱ[𝑓(𝑡)] ∗ ℱ[𝑔(𝑡)]. 
 

By Taking the inverse Fourier transform for both sides of 

Eq. (16), we obtain: 

 

𝑈 =

{
 
 

 
 

1

2(𝑛−1)!
[𝑟𝑛−1𝑠𝑔𝑛(𝑟)] ∗

[

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) −

𝑝 (
𝜕𝑛

𝜕𝑟𝑛
(𝑢0) + [𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)])

]

}
 
 

 
 

  (17) 

 

Eq. (17) can be described as follows: 

 

𝑈 =

∫

 
 
 

{
 
 

 
 [

(𝑟−𝜂)𝑛−1𝑠𝑔𝑛(𝑟−𝜂)

2(𝑛−1)!
] ×

[
𝜕𝑛

𝜕𝑟𝑛
(𝑢0) − 𝑝

𝜕𝑛

𝜕𝑟𝑛
(𝑢0) −

𝑝{𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑟)}
]|

𝑟=𝜂}
 
 

 
 

𝑑𝜂

∞

−∞

  (18) 

 

From the assumption of the HPM, we have: 
 

𝑈 = ∑ 𝑝𝑗𝑈𝑗
∞
𝑚=0   (19) 

 

and the non-linear terms can be decomposed as: 

𝑁(𝑈) = ∑ 𝑝𝑗𝐻𝑗
∞
𝑗=0   (20) 

 

where, Hj(U) represents the He’s polynomials [3] that are 

given by: 

 

𝐻𝑗(𝑈0, 𝑈1, 𝑈2, . . . , 𝑈𝑗) =
1

𝑗!

𝜕𝑗

𝜕𝑝𝑗
[𝑁(∑ 𝑝𝑖𝑈𝑖

∞
𝑖=0 )]𝑝=0

𝑗 = 0,1,2,3, …
  (21) 

 

Putting Eqns. (19) and (20) in to Eq. (18), we obtain: 

 
∑ 𝑝𝑗𝑈𝑗
∞
𝑚=0 =

∫

 
 
 

{
 
 

 
 [

(𝑟−𝜂)𝑛−1𝑠𝑔𝑛(𝑟−𝜂)

2(𝑛−1)!
] ×

[
𝜕𝑛𝑢0

𝜕𝑟𝑛
− 𝑝(

𝜕𝑛𝑢0

𝜕𝑟𝑛
+ [
𝑅(∑ 𝑝𝑗𝑈𝑗

∞
𝑚=0 ) +

∑ 𝑝𝑗𝐻𝑗
∞
𝑗=0 − 𝑞(𝑟)

])]|

𝑟=𝜂}
 
 

 
 

𝑑𝜂

∞

−∞

  
(22) 

 

By equating the coefficients of the same powers of p, we 

deduce: 

 

𝑝0: 𝑈0 = ∫ {[
(𝑟−𝜂)𝑛−1𝑠𝑔𝑛(𝑟−𝜂)

2(𝑛−1)!
] [
𝜕𝑛𝑢0

𝜕𝑟𝑛
]|
𝑟=𝜂
} 𝑑𝜂

∞

−∞

  (23) 

 

𝑝1: 𝑈1 = −∫ {
[
(𝑟−𝜂)𝑛−1𝑠𝑔𝑛(𝑟−𝜂)

2(𝑛−1)!
] ×

[
𝜕𝑛𝑢0

𝜕𝑟𝑛
+ 𝑅(𝑈0) + 𝐻0 − 𝑞(𝑟)]|

𝑟=𝜂

}𝑑𝜂

∞

−∞

  (24) 

 

𝑝2: 𝑈2 = −∫ {
[
(𝑟−𝜂)𝑛−1𝑠𝑔𝑛(𝑟−𝜂)

2(𝑛−1)!
] ×

[𝑅(𝑈1) + 𝐻1]|𝑟=𝜂
} 𝑑𝜂

∞

−∞

  (25) 

 

𝑝𝑗: 𝑈𝑗 = −∫ {
[
(𝑟−𝜂)𝑛−1𝑠𝑔𝑛(𝑟−𝜂)

2(𝑛−1)!
] ×

[𝑅(𝑈𝑗−1) + 𝐻𝑗−1]|𝑟=𝜂

}𝑑𝜂

∞

−∞

  (26) 

 

Taking p=1, then the analytical approximate solution u can 

be given by: 

 

𝑢 = lim
𝑝→1
𝑈 = ∑ 𝑈𝑗

∞
𝑗=0   (27) 

 

 

4. MATHEMATICAL FORMULATION OF COVERING 

EQUATION 

 

Consider the two-dimensional steady laminar natural 

convection of a fluid bounded between two concentric 

horizontal circular cylinders. Let �̂�𝑖 refers to the radius of the 

inner cylinder,  �̂�𝑜 = �̂�𝑖𝑅 the radius of the outer cylinder and 

�̂� = �̂�𝑖𝑟 the radial coordinate (where 𝑅 denotes the radius ratio 

of the outer cylinder to that of the inner cylinder). Both 

cylinders are taken care at a various uniform temperature �̂�𝑖  
and �̂�𝑜, respectively. In this case, it is assumed that gravity acts 

vertically downwards. In this study, cylindrical coordinates 

have been used, the coordinate angular θ measured 

counterclockwise from the downward vertical, θ=0. Flow and 

temperature fields are assumed to be symmetric with respect 

to the vertical plane through the axis of the cylinders. The 

geometry diagram of the flow can be shown in Figure 1.

888



 
 

Figure 1. Cylindrical flow geometry and coordinate system 

 

Now, the non-dimensional governing equations can be 

written [5] as: 

 

𝛻4𝜓 =
1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) + 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+

𝑠𝑖𝑛𝜃
𝜕𝑇

𝜕𝑟
)  

(28) 

 

𝛻2𝑇 =
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)  (29) 

 

where, 𝑅𝑎 = �̂��̂�(�̂�𝑖 − �̂�𝑂)�̂�𝑖
3/(�̂��̂�)  denotes the Rayleigh 

number and 𝑃𝑟 = �̂�/�̂� denotes the Prandtl number, and the 

coefficients, �̂�, �̂�, �̂� and �̂� refer to the acceleration of gravity, 

volumetric coefficient of thermal expansion, kinematic 

viscosity, and thermal diffusivity, respectively. And the 

operators 𝛻4  and 𝛻2  are defined by 𝛻4 = 𝛻2(𝛻2) and 𝛻2 =
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2

𝜕2

𝜕𝜃2
. 

The boundary conditions for Eqns. (28) and (29) in 

dimensionless form are given by: 

 

𝜓 =
𝜕𝜓

𝜕𝑟
= 0, 𝑇 = 1 𝑎𝑡 𝑟 = 1 

𝜓 =
𝜕𝜓

𝜕𝑟
= 0, 𝑇 = 0 𝑎𝑡 𝑟 = 𝑅 

𝜓 =
𝜕2𝜓

𝜕𝜃2
= 0, 𝑇 =

𝜕𝑇

𝜕𝜃
= 0 𝑎𝑡 𝜃 = 0, 𝜋}

 
 

 
 

  (30) 

 

 

5. APPLICATION OF FT-HPM 

 

Now, to apply the algorithm of FT-HPM, first, we simplify 

Eqns. (28) and (29) to get the following system: 

 
𝜕4𝜓

𝜕𝑟4
+
1

𝑟

𝜕3𝜓

𝜕𝑟3
+
1

𝑟2

𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−
1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
)

+𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2

𝜕2𝜓

𝜕𝜃2
) − 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
) = 0

  (31) 

 
𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2

𝜕2𝑇

𝜕𝜃2
−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
) = 0  (32) 

 

Then, the basic steps of the new technique for Eq. (31) and 

Eq. (32) are illustrated as follows. 

By using HPM of Eq. (31) and Eq. (32), we obtain: 

 

(1 − 𝑝) [
𝜕4𝜓

𝜕𝑟4
−
𝜕4𝜓0
∗

𝜕𝑟
] +

𝑝 [

𝜕4𝜓

𝜕𝑟4
+
1

𝑟

𝜕3𝜓

𝜕𝑟3
+
1

𝑟2

𝜕4𝜓

𝜕𝜃2𝜕𝑟2
+ 𝛻2 (

1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2

𝜕2𝜓

𝜕𝜃2
) −      

1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) − 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
] = 0  

(1 − 𝑝) [
𝜕2𝑇

𝜕𝑟2
−
𝜕2𝑇0
∗

𝜕𝑟2
] + 𝑝 [

𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2

𝜕2𝑇

𝜕𝜃2

−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)
] = 0  

 

where, 𝜓0
∗  and 𝑇0

∗  are the initial conditions. The 

rearrangement of the above equations yields: 

 
𝜕4𝜓

𝜕𝑟4
−
𝜕4𝜓0

∗

𝜕𝑟
+ 𝑝
𝜕4𝜓0

∗

𝜕𝑟
+

𝑝 [

1

𝑟

𝜕3𝜓

𝜕𝑟3
+
1

𝑟2
𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−
1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) +

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2
𝜕2𝜓

𝜕𝜃2
) − 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
] = 0  

(33) 

 
𝜕2𝑇

𝜕𝑟2
−
𝜕2𝑇0
∗

𝜕𝑟2
+ 𝑝 [

𝜕2𝑇0
∗

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2

𝜕2𝑇

𝜕𝜃2
−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−

𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)] = 0  

(34) 

 

From the boundary conditions, the second and third terms 

in Eqns. (33) and (34) are equal to zero, therefore, 

 
𝜕4𝜓

𝜕𝑟4
=

−𝑝 [

1

𝑟

𝜕3𝜓

𝜕𝑟3
+
1

𝑟2

𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−
1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) +

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2

𝜕2𝜓

𝜕𝜃2
) − 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]  

(35) 

 
𝜕2𝑇

𝜕𝑟2
= −𝑝 [

1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2

𝜕2𝑇

𝜕𝜃2
−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)]  (36) 

 

Applying the Fourier transform with respect to r on both 

sides of Eq. (35) and Eq. (36), we have: 

 

ℱ [
𝜕4𝜓

𝜕𝑟4
] =

−𝑝ℱ [

1

𝑟

𝜕3𝜓

𝜕𝑟3
+
1

𝑟2
𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−
1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) +

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2
𝜕2𝜓

𝜕𝜃2
) − 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]  

(37) 

 

ℱ [
𝜕2𝑇

𝜕𝑟2
] = −𝑝ℱ [

1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2

𝜕2𝑇

𝜕𝜃2
−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)]  (38) 

 

Using the differentiation property of the Fourier transform, 

we deduce: 

 
(𝑖𝜔)4ℱ[𝜓] =

−𝑝ℱ [

1

𝑟

𝜕3𝜓

𝜕𝑟3
+
1

𝑟2

𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−
1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) +

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2

𝜕2𝜓

𝜕𝜃2
) − 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]  

(39) 

 

(𝑖𝜔)2ℱ[𝑇] = −𝑝ℱ [
1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2
𝜕2𝑇

𝜕𝜃2
−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)]  (40) 

 

The rearrangement of the above system leads to: 

 
ℱ[𝜓] =

1

𝜔4
𝑝ℱ [

1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) −
1

𝑟

𝜕3𝜓

𝜕𝑟3
−
1

𝑟2
𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2
𝜕2𝜓

𝜕𝜃2
) + 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]  

(41) 

 

ℱ[𝑇] =
1

𝜔2
𝑝ℱ [

1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2
𝜕2𝑇

𝜕𝜃2
−
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)]  (42) 

 

By using the properties of the Fourier transform, we get: 

 

ℱ[𝜓] = 𝑝 (
1

2(3!)
)ℱ[𝑟3𝑠𝑔𝑛(𝑟)] ×

ℱ [

1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) −
1

𝑟

𝜕3𝜓

𝜕𝑟3
−
1

𝑟2

𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2

𝜕2𝜓

𝜕𝜃2
) + 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]  

(43) 
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ℱ[𝑇] = 𝑝 (
−1

2(1!)
)ℱ[𝑟𝑠𝑔𝑛(𝑟)]ℱ [

1

𝑟

𝜕𝑇

𝜕𝑟
+
1

𝑟2

𝜕2𝑇

𝜕𝜃2
−

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)]  

(44) 

 

Applying the idea of convolution theory on the right-hand 

side of the above system to get the following result: 
 

ℱ[𝜓] =

𝑝

12
ℱ

{
 
 

 
 [𝑟3𝑠𝑔𝑛(𝑟)] ∗

[

1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) −
1

𝑟

𝜕3𝜓

𝜕𝑟3
−
1

𝑟2
𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2
𝜕2𝜓

𝜕𝜃2
) + 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]

}
 
 

 
 

  
(45) 

 

ℱ[𝑇] =
𝑝

2
ℱ {[𝑟𝑠𝑔𝑛(𝑟)] ∗ [

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)

−
1

𝑟

𝜕𝑇

𝜕𝑟
−
1

𝑟2

𝜕2𝑇

𝜕𝜃2

]}  (46) 

 

Taking the Fourier inverse for both sides of Eqns. (45) and 

(46) we get: 
 

𝜓 =

1

12
𝑝

{
 
 

 
 [𝑟3𝑠𝑔𝑛(𝑟)] ∗

[

1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) −
1

𝑟

𝜕3𝜓

𝜕𝑟3
−
1

𝑟2
𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2
𝜕2𝜓

𝜕𝜃2
) + 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]

}
 
 

 
 

  
(47) 

 

𝑇 =
1

2
𝑝 {[𝑟𝑠𝑔𝑛(𝑟)] ∗ [

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
)

−
1

𝑟

𝜕𝑇

𝜕𝑟
−
1

𝑟2

𝜕2𝑇

𝜕𝜃2

]}  (48) 

 

Eq. (47) and Eq. (48) can be described as follows: 
 

𝜓 =

∫

 
 
 
 

{
 
 

 
 

1

12
𝑝[(𝑟 − 𝜂)3𝑠𝑔𝑛(𝑟 − 𝜂)] ×

[

1

𝑃𝑟

1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
) −
1

𝑟

𝜕3𝜓

𝜕𝑟3
−
1

𝑟2

𝜕4𝜓

𝜕𝜃2𝜕𝑟2
−

𝛻2 (
1

𝑟

𝜕𝜓

𝜕𝑟
+
1

𝑟2

𝜕2𝜓

𝜕𝜃2
) + 𝑅𝑎 (

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑟
)
]|

𝑟=𝜂}
 
 

 
 

𝑑𝜂

∞

−∞

  (49) 

 

𝑇 =
1

2
𝑝∫ {

[(𝑟 − 𝜂)𝑠𝑔𝑛(𝑟 − 𝜂)] ×

[
1

𝑟
(
𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
−
𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
) −
1

𝑟

𝜕𝑇

𝜕𝑟
−
1

𝑟2
𝜕2𝑇

𝜕𝜃2
]|
𝑟=𝜂

} 𝑑𝜂

∞

−∞

  (50) 

 

From the assumption of the HPM, we have: 
 

𝜓 = ∑ 𝑝𝑗𝜓𝑗
∞
𝑚=0  and 𝑇 = ∑ 𝑝𝑗𝑇𝑗

∞
𝑚=0  (51) 

 

and the nonlinear terms can be represented as: 

 
𝜕𝜓

𝜕𝜃

𝜕𝛻2𝜓

𝜕𝑟
= ∑ 𝑝𝑗𝐻𝑗

∞
𝑗=0  ,

𝜕𝜓

𝜕𝑟

𝜕𝛻2𝜓

𝜕𝜃
= ∑ 𝑝𝑗𝐻𝑗

∗∞
𝑗=0

𝜕𝜓

𝜕𝜃

𝜕𝑇

𝜕𝑟
= ∑ 𝑝𝑗𝐺𝑗

∞
𝑗=0  and 

𝜕𝜓

𝜕𝑟

𝜕𝑇

𝜕𝜃
= ∑ 𝑝𝑗𝐺𝑗

∗∞
𝑗=0

}  (52) 

 

Substituting Eqns. (51) and (52) in Eqns. (49) and (50), we 

get: 
 

∑ 𝑝𝑗𝜓𝑗
∞
𝑗=0 =

∫

 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 𝑝 [

(𝑟−𝜂)3𝑠𝑔𝑛(𝑟−𝜂)

12
] ×

[
 
 
 
 
 
 
 
 

1

𝑃𝑟

1

𝑟
(∑ 𝑝𝑗𝐻𝑗
∞
𝑗=0 − ∑ 𝑝𝑗𝐻𝑗

∗∞
𝑗=0 ) −

1

𝑟2
𝜕4

𝜕𝜃2𝜕𝑟2
∑ 𝑝𝑗𝜓𝑗
∞
𝑗=0 −

1

𝑟

𝜕3

𝜕𝑟3
∑ 𝑝𝑗𝜓𝑗
∞
𝑗=0 −

𝛻2 (
1

𝑟

𝜕

𝜕𝑟
∑ 𝑝𝑗𝜓𝑗
∞
𝑗=0 +

1

𝑟2
𝜕2

𝜕𝜃2
∑ 𝑝𝑗𝜓𝑗
∞
𝑗=0 ) +

𝑅𝑎(

𝑐𝑜𝑠𝜃

𝑟

𝜕

𝜕𝜃
∑ 𝑝𝑗𝑇𝑗
∞
𝑗=0 +

𝑠𝑖𝑛𝜃
𝜕

𝜕𝑟
∑ 𝑝𝑗𝑇𝑗
∞
𝑗=0

)    

]
 
 
 
 
 
 
 
 

|

|

|

𝑟=𝜂}
 
 
 
 
 

 
 
 
 
 

𝑑𝜂

∞

−∞

  
(53) 

∑ 𝑝𝑗𝑇𝑗
∞
𝑗=0 =

∫

 
 
 
 

{
 
 

 
 𝑝 [

(𝑟−𝜂)𝑠𝑔𝑛(𝑟−𝜂)

2
] ×

[

1

𝑟
(∑ 𝑝𝑗𝐺𝑗
∞
𝑗=0 −∑ 𝑝𝑗𝐺𝑗

∗∞
𝑗=0 ) −

1

𝑟

𝜕

𝜕𝑟
∑ 𝑝𝑗𝑇𝑗
∞
𝑗=0 −

1

𝑟2
𝜕2

𝜕𝜃2
∑ 𝑝𝑗𝑇𝑗
∞
𝑗=0

]|

𝑟=𝜂}
 
 

 
 

𝑑𝜂

∞

−∞

  
(54) 

 

Comparing the coefficients of the same powers of p, we 

obtain: 

 

𝑝0:

{
 
 
 

 
 
 𝜓0 = ∫ {[

(𝑟−𝜂)3𝑠𝑔𝑛(𝑟−𝜂)

12
] [0]|𝑟=𝜂} 𝑑𝜂

∞

−∞

⟹

(𝑖𝜔)4ℱ[𝜓] = 0 ⟹
𝜕4𝜓0

𝜕𝑟4
= 0

𝑇0 = ∫  {[
(𝑟−𝜂) 𝑠𝑔𝑛(𝑟−𝜂)

2
] [0]|𝑟=𝜂} 𝑑𝜂

∞

−∞

⟹

(𝑖𝜔)2 ℱ[𝑇] = 0 ⟹ 
𝜕2𝑇0

𝜕𝑟2
= 0

  (55) 

 

𝑝1: 

{
 
 
 
 
 

 
 
 
 
 

𝜓1 =

∫

 
 
 
 
 
 

{
 
 
 

 
 
 [

(𝑟−𝜂)3𝑠𝑔𝑛(𝑟−𝜂)

12
] ×

[
 
 
 
 
1

𝑃𝑟

1

𝑟
(𝐻0 −𝐻0

∗) −
1

𝑟2

𝜕4𝜓0

𝜕𝜃2𝜕𝑟2

+𝑅𝑎 (
𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇0

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇0

𝜕𝑟
)

−
1

𝑟

𝜕3𝜓0

𝜕𝑟3
− 𝛻2 (

1

𝑟

𝜕𝜓0

𝜕𝑟
+
1

𝑟2

𝜕2𝜓0

𝜕𝜃2
)

    ]
 
 
 
 

|

|

𝑟=𝜂}
 
 
 

 
 
 

𝑑𝜂

∞

−∞

𝑇1 =∫ {
[
(𝑟−𝜂)𝑠𝑔𝑛(𝑟−𝜂)

2
] ×

[
1

𝑟
(𝐺0 − 𝐺0

∗) −
1

𝑟

𝜕𝑇0

𝜕𝑟
−
1

𝑟2

𝜕2𝑇0

𝜕𝜃2
]|
𝑟=𝜂

}𝑑𝜂 

∞

−∞

  (56) 

 

𝑝2: 

{
 
 
 
 
 

 
 
 
 
 

𝜓2 =

∫

 
 
 
 
 
 

{
 
 
 

 
 
 [

(𝑟−𝜂)3𝑠𝑔𝑛(𝑟−𝜂)

12
] ×

[
 
 
 
 
1

𝑃𝑟

1

𝑟
(𝐻1 −𝐻1

∗) −
1

𝑟2

𝜕4𝜓1

𝜕𝜃2𝜕𝑟2

+𝑅𝑎 (
𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇1

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇1

𝜕𝑟
)

−
1

𝑟

𝜕3𝜓1

𝜕𝑟3
− 𝛻2 (

1

𝑟

𝜕𝜓1

𝜕𝑟
+
1

𝑟2

𝜕2𝜓1

𝜕𝜃2
)

    ]
 
 
 
 

|

|

𝑟=𝜂}
 
 
 

 
 
 

𝑑𝜂

∞

−∞

𝑇2 =∫ {
[
(𝑟−𝜂)𝑠𝑔𝑛(𝑟−𝜂)

2
] ×

[
1

𝑟
(𝐺1 − 𝐺1

∗) −
1

𝑟

𝜕𝑇1

𝜕𝑟
−
1

𝑟2

𝜕2𝑇1

𝜕𝜃2
]|
𝑟=𝜂

}𝑑𝜂

∞

−∞

 (57) 

 

𝑝𝑗 : 

{
 
 
 
 
 

 
 
 
 
 

𝜓𝑗 =

∫

 
 
 
 
 
 

{
 
 
 

 
 
 [

(𝑟−𝜂)3𝑠𝑔𝑛(𝑟−𝜂)

12
] ×

[
 
 
 
 
 
1

𝑃𝑟

1

𝑟
(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) −
1

𝑟2

𝜕4𝜓𝑗−1

𝜕𝜃2𝜕𝑟2

+𝑅𝑎 (
𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇𝑗−1

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇𝑗−1

𝜕𝑟
) −

1

𝑟

𝜕3𝜓𝑗−1

𝜕𝑟3
− 𝛻2 (

1

𝑟

𝜕𝜓𝑗−1

𝜕𝑟
+
1

𝑟2

𝜕2𝜓𝑗−1

𝜕𝜃2
)

    ]
 
 
 
 
 

|

|

𝑟=𝜂}
 
 
 

 
 
 

𝑑𝜂 

∞

−∞

𝑇𝑗 =∫ {
[
(𝑟−𝜂)𝑠𝑔𝑛(𝑟−𝜂)

2
] ×

1

𝑟
[(𝐺𝑗−1 − 𝐺𝑗−1

∗ ) −
𝜕𝑇𝑗−1

𝜕𝑟
−
1

𝑟

𝜕2𝑇𝑗−1

𝜕𝜃2
]|
𝑟=𝜂

}𝑑𝜂

∞

−∞

 (58) 

 

where, 

 

𝐻0 =
𝜕𝜓0

𝜕𝜃

𝜕𝛻2𝜓0

𝜕𝑟
, 𝐻1 =

𝜕𝜓0

𝜕𝜃

𝜕𝛻2𝜓1

𝜕𝑟
+
𝜕𝜓1

𝜕𝜃

𝜕𝛻2𝜓0

𝜕𝑟

𝐻0
∗ =
𝜕𝜓0

𝜕𝑟

𝜕𝛻2𝜓0

𝜕𝜃
, 𝐻1
∗ =
𝜕𝜓0

𝜕𝑟

𝜕𝛻2𝜓1

𝜕𝜃
+
𝜕𝜓1

𝜕𝑟

𝜕𝛻2𝜓0

𝜕𝜃

𝐺0 =
𝜕𝜓0

𝜕𝜃

𝜕𝑇0

𝜕𝑟
, 𝐺1 =

𝜕𝜓0

𝜕𝜃

𝜕𝑇1

𝜕𝑟
+
𝜕𝜓1

𝜕𝜃

𝜕𝑇0

𝜕𝑟

𝐺0
∗ =
𝜕𝜓0

𝜕𝑟

𝜕𝑇0

𝜕𝜃
 𝑎𝑛𝑑 𝐺1

∗ =
𝜕𝜓0

𝜕𝑟

𝜕𝑇1

𝜕𝜃
+
𝜕𝜓1

𝜕𝑟

𝜕𝑇0

𝜕𝜃 }
  
 

  
 

  (59) 

 

To solve Eq. (55), we use the integration with respect to r 

subject to the boundary conditions in Eq. (30), to get: 
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𝜓0 = 𝜙(𝜃)(

1

6
𝑟3 −

𝑅+1

4
𝑟2 +

𝑅

2
𝑟 +

1

24
(𝑅3 − 3𝑅2 − 3𝑅 + 1)

), 𝑇0 =
(𝑅−𝑟)

𝑅−1
 (60) 

 

𝜓1 =
1

48

1

(𝑅2−𝑅)

[
 
 
 −𝑅𝑎𝑅 {

2𝑟4 − 4(𝑅 + 1)𝑟3 + 6(𝑅2 + 1)𝑟2

−4(𝑅3 + 1)𝑟 + 𝑅4 + 1 
} 𝑠𝑖𝑛 𝜃

−
1

𝑀
{
2𝑅𝑎𝑅(𝑅 − 1)(𝑅3 − 3𝑅2 + 3𝑅 − 1)

× [(−3𝑅𝑟3 − 3𝑅2𝑟) 𝑙𝑛(𝑅) +… ]
} 𝑠𝑖𝑛 𝜃

]
 
 
 

  (61) 

 

𝑇1 =
1

144

1

(𝑅−1)

[
 
 
 
 
 
 
 
 
 

3

𝑀
𝑅𝑎𝑅(𝑅 − 1)3 ×

{
  
 

  
 𝑟(𝑅 + 1)(𝑅2 − 4𝑅 + 1) (

𝑙𝑛(𝑅) −
2 𝑙𝑛(𝑟)

)

+(2𝑟3 − 12𝑟2 + 3𝑟 − 2)𝑅 −
2

3
𝑟4 +

2𝑟3 + (2𝑟 + 6)𝑅2 + 6(𝑅2 + 1)𝑟2

+
1

3
𝑟 − (

1

3
𝑟 − 2)𝑅3 }

  
 

  
 

𝑐𝑜𝑠(𝜃)

−
144

2
((2 𝑙𝑛(𝑟) − 𝑙𝑛(𝑅) − 2)𝑟 + 𝑅 + 1) ]

 
 
 
 
 
 
 
 
 

  (62) 

 

𝜓2 =
1

144

𝑅𝑎𝑙𝑛 (𝑅)

(𝑅−1)𝑀

[
 
 
 
 
 
 
 
 
 
(72𝑟4 + 390𝑟3 − 54𝑟2 − 9𝑟 + 6)𝑅

+72𝑅 𝑙𝑛(𝑅) (𝑅 + 1)2𝑟3 − 15𝑟3 −

36𝑅𝑟3 (−4𝑅
3 + 10𝑅2

+𝑅4 + 4𝑅 + 5
) 𝑙𝑛(𝑟) +⋯+

(
−
9671

735
−
24067

210
𝑟 −

1766

7
𝑟2 +

26525

42
𝑟3

+
2200

3
𝑟4 −

9873

35
𝑟5 +

3064

35
𝑟6 −

2048

147
𝑟7
)

× (
7(𝑅−1)𝑐𝑜𝑠(𝜃)𝑅𝑎

160𝑃𝑟𝑙 𝑛(𝑅)𝑀
)𝑅2 +⋯ ]

 
 
 
 
 
 
 
 
 

𝑠𝑖𝑛 𝜃  (63) 

 

𝑇2 =
31(𝑅−1)3𝑅𝑎

161280𝑀2

[
 
 
 
 
 
 

140𝑅𝑎

31
(𝑅3 − 4𝑅2 + 𝑅)(𝑅 + 1)𝑟 ×

(
(𝑅3 − 3𝑅2 + 3𝑅 + 1) 𝑙𝑛(𝑟) 𝑙𝑛(𝑅)

+⋯
)

+(

35

31
−
280

31
𝑟 −

560

31
𝑟2 −

840

31
𝑟3

+
2870

31
𝑟4 −

1400

31
𝑟5 +

560

93
𝑟6
)𝑅2 +⋯

]
 
 
 
 
 
 

𝑐𝑜𝑠 𝜃  (64) 

 

where, 

 

𝜙(𝜃) =
(𝑅3−3(𝑅2−𝑅)+1)

𝑀
𝑠𝑖𝑛𝜃, 

𝑀 = [6(𝑅2 + 𝑅) 𝑙𝑛(𝑅) − 2𝑅4 + 7𝑅3 − 21𝑅2 + 17𝑅 − 1]. 
 

The analytical approximate solutions ψ, T are given by 

putting p=1 as: 

 

𝜓 = lim
𝑁⟶∞
∑ 𝜓𝑗
𝑁
𝑗=0   (65) 

 

𝑇 = lim
𝑁⟶∞
∑ 𝑇𝑗
𝑁
𝑗=0   (66) 

 

 

6. RESULTS AND DISCUSSION 

 

In this part, we will discuss the results of the new procedure 

(FT-HPM), which was used to solve the two-dimensional 

natural convection problem between two concentric horizontal. 

The dimensionless parameter Rayleigh number and the 

diameter ratio are used, which significantly influence the flow 

pattern, mechanism of the heat transfer and the stability of 

flow transfers in the system (28, 29). 
 

6.1 Streamline and isotherm patterns 
 

To illustrate the heat transfer within the cylinders, the 

streamlines and isotherm contours are used. In Figure 2-a, b, c, 

d, the Rayleigh number of the range (103≤Ra≤104) as well as 

different diameter ratios (R=1.5, 1.85 and 2.0) at Prandtl 

number of 0.7 are considered. 

Figure 2-a shows that there is no significant change in the 

flow pattern and temperature fields at Ra=103 with different 

values of diameter ratio. The flow of fluid and temperature for 

Ra=3×103, Pr=0.7, at different diameter ratios (R=1.5, 1.85 

and 2.0) are illustrated in Figure 2-b. It is clear in this figure, 

that the flow pattern starts with the upward displacement, even 

if slightly, with the increase in the radius ratio. Moreover, the 

temperature pattern looks like circles when the radius is 

between R=1.5 and R=1.85, due to the weak effect of 

convection currents, while the temperature pattern appears 

distorted at R=2, this indicates that an increase in the heat 

convection. Figure 2-c explain the effect of Ra=5×103, Pr=0.7, 

with different diameter ratios R. In this figure, we notice that 

the flow pattern moves upwards as the radius ratio increases. 

While the temperature pattern resembles circles when the 

radius ratio is R=1.5 and the effect of heat currents increases 

with increasing the diameter ratio to R=1.85 and when the 

radius ratio is increased to R=2, the temperature pattern 

becomes more distorted. It is clear from Figure 2-d that the 

increase in the Rayleigh number and the diameter ratio leads 

to a distortion of the temperature distribution. From the plot of 

streamlines and isotherms at Rayleigh number of 104, the 

radial temperature inversion appears  indicating the separation 

of the inner and outer cylinder thermal boundary layers which 

is obvious at R=2. 

 

Table 1. Comparison of absolute error between FT-HPM  

and HPM of ψ(r,θ) at Ra=1000 and Pr=0.7 

 

θ R 
r=1.1 r=1.5 

FT-HPM HPM FT-HPM HPM 

0 
1.5 0.0000 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000 0.0000 

30 
1.5 0.18×10-5 0.28×10-3 0.25×10-3 7.22×10-1 

2 0.20×10-5 0.77×10-3 0.38×10-3 3.61×10-1 

60 
1.5 4.70×10-7 0.12×10-2 0.13×10-3 3.64×10-1 

2 8.53×10-7 0.85×10-3 0.52×10-3 1.0084 

90 
1.5 0.15×10-5 0.21×10-2 0.10×10-2 2.83×10-1 

2 0.22×10-5 0.16×10-2 0.99×10-3 1.45 

180 
1.5 0.13×10-5 0.23×10-2 0.16×10-3 4.64×10-1 

2 0.20×10-5 0.17×10-2 0.10×10-2 1.7091 

 

Table 2. Comparison of absolute error between FT-HPM 

and HPM of T(r,θ) at Ra=1000 and Pr=0.7 

 

θ R 
r=1.1 r=1.5 

FT-HPM HPM FT-HPM HPM 

0 
1.5 0.13×10-4 0.66×10-2 0.11×10-4 0.82×10-1 

2 0.95×10-3 0.12×10-1 1.24×10-3 2.27×10-1 

30 
1.5 0.88×10-5 0.19×10-2 0.20×10-4 0.33×10-1 

2 0.14×10-2 0.23×10-2 0.93×10-3 0.45×10-1 

60 
1.5 0.16×10-4 0.41×10-2 0.12×10-5 0.31×10-1 

2 0.11×10-2 0.10×10-1 1.03×10-3 1.92×10-1 

90 
1.5 0.11×10-4 0.14×10-2 0.16×10-4 0.21×10-2 

2 0.14×10-2 0.46×10-2 0.53×10-3 0.84×10-1 

180 
1.5 0.12×10-4 0.22×10-2 0.12×10-4 0.10×10-1 

2 0.13×10-2 0.64×10-2 1.87×10-4 1.16×10-1 

 

In the above Tables 1 and 2, the absolute errors of the 

approximate solutions obtained using FT-HPM and HPM 

were compared  at Ra=1000 and Pr=0.7. It is clear from these 

tables that the absolute errors using FT-HPM are lower than 

the absolute errors using HPM, moreover, we find that the new 

method (FT-HPM) has higher accuracy and efficiency than 

HPM. 
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Figure 2. Streamline (left) and isotherms (right) at different rayleigh number, Pr=0.7 
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6.2 Velocity distribution 

 

In the r- and θ-directions, the components of velocity �̂�𝑟 =

�̂��̂�𝑖
−1𝑉𝑟(𝑟, 𝜃) and �̂�𝜃 = �̂��̂�𝑖

−1𝑉𝜃(𝑟, 𝜃), can be calculated by 

using the following relations, respectively: 

 

𝑉𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
, 𝑉𝜃 = −

𝜕𝜓

𝜕𝑟
 (67) 

 

In Figure 3 we plot the velocity Vθ, obtained by 

differentiation of Eq. (65) with respect to r, for θ=n(30°), 

1<n<5 at Ra=3000, Pr=0.7, and R=1.85. 

 

 
 

Figure 3. θ-component of velocity versus radial position  

at θ=n(30°), 1<n<5 at Ra=3000, Pr=0.7, and R=1.85 

 

As is evident from Figure 3, for the creeping-flow solution, 

Vθ(r,θ) and Vθ(r,π-θ) are equal, while, such symmetry does not 

hold for finite Rayleigh numbers. The velocity has a maximum 

value in the up-flow region occupying roughly that half of the 

gap which is nearer the inner cylinder, while the minimum 

velocity is in the down flow region in the outer ‘half’ gap. It 

was noted that the magnitude of maximum is in the following 

order, greatest for θ=90°, next greatest for 120°, followed by 

60°, 150°, and 30°, While in minimum, the absolute magnitude 

is equally great for θ=90° and 120°.  In addition, it is found that 

the magnitudes of the extrema in the upper half are larger than 

those corresponding in the lower half of the flow region. For 

θ=120°, both extremes are approximately equal. The 

maximum for the velocity Vθ has the largest magnitude for any 

θ between 0° and 120°, while the minimum has the largest 

magnitude when θ is between 120° and 180°. 

 

6.3 Heat transfer rates 

 

The local Nusselt numbers 𝑁𝑢𝑖(𝜃) and 𝑁𝑢𝑜(𝜃) are used to 

express the local heat flow rates per unit area as �̂�𝑖 =

�̂�(�̂�𝑖 − �̂�𝑂)�̂�𝑖
−1𝑙𝑛(𝑅)−1𝑁𝑢𝑖  and �̂�𝑜 = �̂�(�̂�𝑖 −

�̂�𝑂)�̂�𝑖
−1𝑅−1𝑙𝑛(𝑅)−1𝑁𝑢𝑜  in the inner and outer cylinders, 

respectively, where �̂� denotes to the thermal conductivity of 

the fluid. In the same way, the means of the overall Nusselt 

number 𝑁𝑢̅̅ ̅̅  is used to express the total heat flow rate �̂� from 

the inner cylinder to the outer cylinder as �̂� = 𝜋�̂�(�̂�𝑖 −

�̂�𝑂)𝑙𝑛(𝑅)
−1𝑁𝑢̅̅ ̅̅ . Moreover, by the Fourier's law of conduction, 

the local Nusselt numbers 𝑁𝑢𝑖(𝜃) and 𝑁𝑢𝑜(𝜃), and the mean 

Nusselt number 𝑁𝑢̅̅ ̅̅  are defined respectively as follows: 

 

𝑁𝑢𝑖 = −𝑙𝑛(𝑅) [𝑟
𝜕𝑇

𝜕𝑟
]
𝑟=1

  (68) 

𝑁𝑢𝑜 = −𝑙𝑛(𝑅) [𝑟
𝜕𝑇

𝜕𝑟
]
𝑟=𝑅

  (69) 

 

𝑁𝑢̅̅ ̅̅ = −
𝑙𝑛(𝑅)

𝜋
∫ [𝑟

𝜕𝑇

𝜕𝑟
]
𝑟=1
𝑑𝜃

𝜋

0

= −
𝑙𝑛(𝑅)

𝜋
∫ [𝑟

𝜕𝑇

𝜕𝑟
]
𝑟=𝑅
𝑑𝜃

𝜋

0

  (70) 

 

The effect of Ra=3000, Pr=0.7, and R=1.85 is appeared in 

Figure 4. In this figure, the local Nusselt numbers Nui and Nuo 

are represented as functions of θ. It is observed from Figure 4 

that Nui>1 at 0°<θ<110°,  and that Nui<1 at  110°<θ<180°, 

whereas Nuo<1 at  0°<θ<85°,  and Nuo>1 at 85°<θ<180°.  That 

is mean, the rate of heat transfer has been increased in the 

lower and upper ‘half’ of the inner and outer cylinders, 

respectively, while the rate of heat transfer has been reduced 

in another region. Of the two maxima, the greatest value of 

Nuo occurring at θ=180°. Whereas, of the two minima, at 

θ=180° the Nusselt number Nui has absolute difference which 

is greater than unity (the pure conduction value of Nusselt 

number). It is clear that the mean ordinate for both curves in 

Figure 4 is greater than unity. 

 

 
 

Figure 4. Inner cylinder and outer cylinder local nusselt 

numbers versus angular position for Ra=3000, Pr=0.7, and 

R=1.85 

 

In Table 3, the maximum value of stream function 𝜓𝑚𝑎𝑥  
and the average Nusselt number 𝑁𝑢̅̅ ̅̅  between the present study 

and two methods, namely the ADI method and the Samarskii-

Andreev method [12] are compared for Rayleigh numbers of 

20, 30, 80, 100 and 200 and radius ratios of 2 and √2. In 

addition, Table 4 shows a comparison of the average Nusselt 

number for the present work with that of Singh et al. [13] and 

Zhang et al. [17] for Rayleigh numbers of 103 and 104. 

 

Table 3. Comparison with ADI and samarskii-andreev 

methods [12] at Pr=0.7 with different values of rayleigh 

number 

 

Ra R 

ψmax Nu 

FT-

HPM 
ADI 

Samarskii-

Andreev 

FT-

HPM 
ADI 

Samarskii-

Andreev 

20 

2 

2.338 2.338 2.339 1.066 1.066 1.067 

30 3.461 3.461 3.463 1.143 1.143 1.143 

100 9.986 9.971 9.971 1.807 1.868 1.868 

200 16.31 16.31 16.31 2.691 2.691 2.691 

20 

2
1
2 

1.020 1.020 1.020 1.003 1.003 1.003 

30 1.528 1.528 1.529 1.007 1.007 1.007 

80 4.050 4.038 4.038 1.050 1.051 1.051 

100 5.036 5.017 5.020 1.078 1.078 1.078 
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Table 4. Comparison of the average Nusselt number with 

[13] and [17] at Pr=1 with different values of Rayleigh 

number 

 

Ra 
Average Nusselt Number (𝑵𝒖̅̅ ̅̅ ) 

FT-HPM [17] [13] 

103 1.027 1.023 1.028 

104 1.65 1.64 1.66 

 

It is clear from the  above Tables 3 and 4 that the results of 

the current method (FT-HPM) are in good agreement with the 

results of previous works. 
 

 

7. CONVERGENCE ANALYSIS OF FT-HPM 

 

In this section, we will present some important definitions 

and theories through which we can study convergence analysis 

with finding the necessary condition for convergence of the 

approximate analytic solutions (65, 66) that were found 

depending on the new algorithm (FT-HPM). Moreover, we 

must begin with the following definition: 

Definition 7.1 Let 𝒩:ℋ ⟶ ℝ  be a non-linear mapping, 

where ℋ , ℝ  represents the Banach space, the set of real 

numbers, respectively.  Then, the sequence of the solutions can 

be written as: 
 

𝐸𝑛+1 = 𝒩(𝐸𝑛), 𝐸𝑛 = ∑ ℎ𝑗
𝑛
𝑗=0 , 𝑗 = 0,1,2,3, … (71) 

 

where, 𝒩 satisfies the Lipschitz condition, such that for 𝛾 ∈
ℝ, we have: 

 
‖𝒩(𝐸𝑛) −𝒩(𝐸𝑛−1)‖ ≤ 𝛾‖𝐸𝑛 − 𝐸𝑛−1‖, 0 < 𝛾 < 1 (72) 

 

Theorem 7.1 The series of the analytical-approximate 

solution 𝜓(𝑟, 𝜃) = ∑ 𝜓𝑗(𝑟, 𝜃)
∞
𝑗=0  that is generated from 

applying the new scheme (FT-HPM) converges if it satisfies 

the following condition: 
 

‖𝐸𝑛+1 − 𝐸𝑛‖ → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1 (73) 

 

Proof: 
 

‖𝐸𝑛+1 − 𝐸𝑛‖ = ‖∑ 𝜓𝑗
𝑛+1
𝑗=0 − ∑ 𝜓𝑗

𝑛
𝑗=0 ‖ =

‖
𝜓0 + ∑ 𝜓𝑗

𝑛+1
𝑗=1 −

[𝜓0 + ∑ 𝜓𝑗
𝑛
𝑗=1 ]

‖  

= ‖
𝜓0 + ∑ 𝐿1

−1[𝒲𝑗−1]
𝑛+1
𝑗=1 −

{𝜓0 + ∑ 𝐿1
−1[𝒲𝑗−1]

𝑛
𝑗=1 }

‖  

= ‖
𝜓0 + 𝐿1

−1 ∑ [𝒲𝑗−1]
𝑛+1
𝑗=1 −

{𝜓0 + 𝐿1
−1∑ [𝒲𝑗−1]

𝑛
𝑗=1 }

‖  

 

Since, 𝐸𝑛+1 = 𝒩(𝐸𝑛), then 
 

‖𝐸𝑛+1 − 𝐸𝑛‖ = ‖
𝐿1
−1𝒩∑ [𝒲𝑗−1]

𝑛
𝑗=0 −

𝐿1
−1𝒩∑ [𝒲𝑗−1]

𝑛−1
𝑗=0

‖  

= ‖ 𝐿1
−1𝒩[∑ 𝜓𝑗

𝑛
𝑗=0 ] − 𝐿1

−1𝑁[∑ 𝜓𝑗
𝑛−1
𝑗=0 ]‖  

≤ |𝐿1
−1|‖ 𝒩[∑ 𝜓𝑗

𝑛
𝑗=0 ] − 𝑁[∑ 𝜓𝑗

𝑛−1
𝑗=0 ]‖  

≤ 𝛾‖ ∑ 𝐿1
−1[𝒲𝑗−1]

𝑛
𝑗=0 − ∑ 𝐿1

−1[𝒲𝑗−1]
𝑛−1
𝑗=0 ‖  

≤ 𝛾2‖∑ 𝐿1
−1[𝒲𝑗−1]

𝑛−1
𝑗=0 − ∑ 𝐿1

−1[𝒲𝑗−1]
𝑛−2
𝑗=0 ‖  

⋮ 

≤ 𝛾𝑛‖∑ 𝐿1
−1[𝒲𝑗−1]

1
𝑗=0 − ∑ 𝐿1

−1[𝒲𝑗−1]
0
𝑗=0 ‖  

= 𝛾𝑛‖𝐸1 − 𝐸0‖ → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1. 

where, 

 

𝐿1
−1(∙) = ∫ [

(𝑟−𝜂)3𝑠𝑔𝑛(𝑟−𝜂)

12
] (∙)𝑟=𝜂𝑑𝜂

∞

−∞

, 

 𝒲𝑗−1 = [

1

𝑃𝑟

1

𝑟
(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝑅𝑎 (
𝑐𝑜𝑠𝜃

𝑟

𝜕𝑇𝑗−1

𝜕𝜃
+ 𝑠𝑖𝑛𝜃

𝜕𝑇𝑗−1

𝜕𝑟
)

−
1

𝑟2

𝜕4𝜓𝑗−1

𝜕𝜃2𝜕𝑟2
−
1

𝑟

𝜕3𝜓𝑗−1

𝜕𝑟3
− 𝛻2 (

1

𝑟

𝜕𝜓𝑗−1

𝜕𝑟
+
1

𝑟2

𝜕2𝜓𝑗−1

𝜕𝜃2
)
]. 

 

Theorem 7.2 The necessary condition for the convergence 

of the series of the solutions 𝑇(𝑟, 𝜃) = ∑ 𝑇𝑗(𝑟, 𝜃)
∞
𝑗=0  that is 

obtained by the based algorithm (FT-HPM), is achieving of the 

following property: 

 
‖𝐸𝑛+1 − 𝐸𝑛‖ → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1 (74) 

 

Proof: 

 

‖𝐸𝑛+1 − 𝐸𝑛‖ = ‖∑ 𝑇𝑗
𝑛+1
𝑗=0 − ∑ 𝑇𝑗

𝑛
𝑗=0 ‖ = ‖

𝑇0 +∑ 𝑇𝑗
𝑛+1
𝑗=1 −

[𝑇0 + ∑ 𝑇𝑗
𝑛
𝑗=1 ]

‖  

= ‖
 𝑇0 + ∑ 𝐿2

−1[�⃛�𝑗−1]
𝑛+1
𝑗=1 −

{𝑇0 + ∑ 𝐿2
−1[�⃛�𝑗−1]

𝑛
𝑗=1 } 

‖  

= ‖
 𝑇0 + 𝐿2

−1∑ [�⃛�𝑗−1]
𝑛+1
𝑗=1 −

{𝑇0 + 𝐿2
−1∑ [�⃛�𝑗−1]

𝑛
𝑗=1 } 

‖  

 

Since, 𝐸𝑛+1 = 𝒩(𝐸𝑛), then: 

 

‖𝐸𝑛+1 − 𝐸𝑛‖ = ‖𝐿2
−1𝒩∑ [�⃛�𝑗−1]

𝑛
𝑗=0 − 𝐿2

−1𝒩∑ [�⃛�𝑗−1]
𝑛−1
𝑗=0 ‖  

= ‖𝐿2
−1𝒩[∑ 𝑇𝑗

𝑛
𝑗=0 ] − 𝐿2

−1𝑁[∑ 𝑇𝑗
𝑛−1
𝑗=0 ]‖  

≤ |𝐿2
−1|‖𝒩[∑ 𝑇𝑗

𝑛
𝑗=0 ] − 𝑁[∑ 𝑇𝑗

𝑛−1
𝑗=0 ]‖  

≤ 𝛾‖∑ 𝐿2
−1[�⃛�𝑗−1]

𝑛
𝑗=0 − ∑ 𝐿2

−1[�⃛�𝑗−1]
𝑛−1
𝑗=0 ‖  

≤ 𝛾2‖∑ 𝐿2
−1[�⃛�𝑗−1]

𝑛−1
𝑗=0 − ∑ 𝐿2

−1[�⃛�𝑗−1]
𝑛−2
𝑗=0 ‖  

⋮ 

≤ 𝛾𝑛‖∑ 𝐿2
−1[�⃛�𝑗−1]

1
𝑗=0 − ∑ 𝐿2

−1[�⃛�𝑗−1]
0
𝑗=0 ‖  

= 𝛾𝑛‖𝐸1 − 𝐸0‖ → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1. 
 

where, 

 

𝐿2
−1(∙) = ∫ [

(𝑟−𝜂)𝑠𝑔𝑛(𝑟−𝜂)

2
] (∙)𝑟=𝜂𝑑𝜂

∞

−∞

, 

�⃛�𝑗−1 =
1

𝑟
(𝐺𝑗−1 − 𝐺𝑗−1

∗ ) −
1

𝑟

𝜕𝑇𝑗−1

𝜕𝑟
−
1

𝑟2

𝜕2𝑇𝑗−1

𝜕𝜃2
.  

 

The results of the above theorems )7.1, 7.2(, can be applied 

to calculate the values of the parameter γn by formulating the 

following definition. 

 

Definition 7.2 For n=1,2,3, … 

 

𝛾𝑛 = {

‖𝐸𝑛+1−𝐸𝑛‖

‖𝐸1−𝐸0‖
=
‖ℎ𝑛+1‖

‖ℎ1‖
, ‖ℎ1‖ ≠ 0, 𝑛 = 1,2,3, …

0, ‖ℎ1‖ = 0
  (75) 

 

The convergence of the analytical solutions to the problem 

under study, can be tested by using Eq. (75). Accordingly, the 

results of convergence of the solutions that were found using 

the two methods FT-HPM and HPM were compared, as shown 

in the table below: 
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Table 5a. Comparison of the values of the parameter γn  

for ψ(r, θ) between FT-HPM and HPM at Pr=0.7 

 
Ra R Method γ γ2 

102 1.5 
FT-HPM 0.20×10-1 0.17×10-4 

HPM 0.40×10-1 0.80×10-2 

103 1.5 
FT-HPM 0.25×10-1 0.17×10-3 

HPM 0.52×10-1 3.58×10-1 

102 2 
FT-HPM 0.98×10-2 0.65×10-3 

HPM 0.72×10-1 0.87×10-2 

103 2 
FT-HPM 2.52×10-1 0.65×10-2 

HPM 5.11×10-1 2.12×10-1 

 

Table 5b. Comparison of the values of the parameter γn for 

T(r, θ) between FT-HPM and HPM at Pr=0.7 

 

Ra R Method γ γ2 

102 1.5 
FT-HPM 0.17×10-2 0.11×10-3 

HPM 0.60×10-1 0.16×10-2 

103 1.5 
FT-HPM 0.45×10-1 0.65×10-2 

HPM 5.79×10-1 3.80×10-1 

102 2 
FT-HPM 0.12×10-1 0.26×10-3 

HPM 1.21×10-1 0.45×10-2 

103 2 
FT-HPM 2.00×10-1 0.25×10-2 

HPM 8.69×10-1 0.42×10-1 

 

Table 5a, b shows that, γn→0 as n→∞ for 0<γ<1. In addition, 

through this tables, the difference in convergence between FT-

HPM and HPM methods can be seen, which show that the 

powers of γ calculated using FT-HPM, approach zero faster 

than the powers of γ calculated based on HPM. Moreover, it 

can be said that FT-HPM represents an evolution of HPM with 

better convergence. 
 

 

8. CONCLUSION 
 

In this paper, A new hybrid analytical algorithm is presented 

which combines the homotopy perturbation method and the 

Fourier transform supported by the convolution theory, to 

solve the problem of two-dimensional natural convection 

between two horizontal concentric cylinders, each of which is 

maintained at a different uniform temperature. This study 

proved that the use of the convolution theory helps in 

facilitating the calculations resulting from the solution of 

higher order differential equations by reducing the number of 

integral operations to one integral operation. The effect of 

Rayleigh number and diameter ratio on fluid flow, heat 

transfer, velocity distribution and Nusselt number are 

discussed. The adopted method was used to solve the 

governing equations represented by the flow and energy 

equations. The effect of Rayleigh number of the range 

(103≤Ra≤104) was studied, as well as three different diameter 

ratios (1.5, 1.85, 2) at Pr=0.7. The study showed that there is 

no significant change in the flow pattern and the temperature 

fields at Ra=103 with different values of the diameter ratio, and 

then the temperature pattern is similar to the circles. And when 

the Rayleigh number increases with the increase in the 

diameter ratio, the flow pattern moves upwards, moreover, the 

temperature distribution pattern becomes distorted, and this 

indicates an increase in heat convection.  The accuracy and 

efficiency of the new method has been proven, in addition, the 

results obtained are in agreement with the previously 

published results. Also, through comparison with HPM, we 

conclude that FT-HPM is a powerful and effective method 

with high accuracy and therefore it is recommended to use it 

to solve difficult problems in many fields of science and 

engineering. 
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NOMENCLATURE 

 

g Gravitational acceleration, 𝑘𝑔/ 𝑚2 

�̂� Thermal conductivity 

Nu Local Nusselt number 

Pr Prandtl number, 𝑃𝑟 = �̂�/�̂� 

Ra Rayleigh number, 𝑅𝑎 = �̂��̂�(�̂�𝑖 −

�̂�𝑂)�̂�𝑖
3/(�̂��̂�) 

�̂� Radial coordinate, �̂� = �̂�𝑖𝑟 
r Non-dimentional radius coordinate 

�̂�𝑖 Radius of the inner cylinder 

�̂�𝑜 Radius of the outer cylinder 

R Outer to inner radii ratio 

T Temperature 

Ti Inner cylinder tempereture 

TO Outer cylinder tempereture 

�̂� Kinematic viscosity 

 

Greek symbols 

 

 

�̂� Thermal diffusivity 

�̂� Thermal expansion coefficient 

θ Angular coordinate 

ψ Stream function 

ω Parameter of Fourier transform 

 

Subscripts 

 

 

i Inner wall 

max Maximum value 

o Outer wall 
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