
Computational Optimization of Cam Knife-Edge Follower Design Using Potential Energy 

Analysis 

Thi Thanh Nga Nguyen

Mechanical Engineering Faculty, Thai Nguyen University of Technology, Thai Nguyen 250000, Vietnam 

Corresponding Author Email: nguyennga@tnut.edu.vn

https://doi.org/10.18280/mmep.100306 ABSTRACT 

Received: 8 April 2023 

Accepted: 15 May 2023 

This study introduces a novel computational approach for optimizing the design of cam 

knife-edge followers by utilizing potential energy analysis. In this methodology, cam 

parameters are succinctly represented using curvilinear coordinate systems, and the 

objective function is derived from the potential energy. To stabilize the position 

between two points, a stabilization function is incorporated. The cam curve is 

discretized through finite element analysis, and the resulting nonlinear equation is 

solved using the Newton-Raphson method. Additionally, the optimal design of the cam 

knife-edge follower considers cam size, which is associated with the base circle radius 

and pressure angle. Results demonstrate that the proposed method offers greater 

flexibility in evaluating and optimizing the design parameters of cam knife-edge 

followers compared to existing approaches. This study not only provides new insights 

into the optimization of cam knife-edge followers but also has potential applications in 

other related fields. 
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1. INTRODUCTION

Cam-follower mechanisms, featuring flexible motions 

generated by cam curves, have been widely employed in 

various applications, such as engines [1-6], fuel pumps [6], 

and indexing cam mechanisms [7, 8]. In cam system 

computations, accurately describing the follower motion is 

crucial, as it influences the cam motion characteristics, 

including kinematics and dynamics. Several transfer functions 

have been employed for modeling follower motions, including 

trigonometric functions [9-12], polynomials [13-15], and 

spline functions [16-19]. 

Concerning the kinematics and dynamics of cam follower 

motion, Zhou et al. [1] investigated the effects of design 

methods on the profiles of intermediate cams in variable valve 

lift systems. By employing a kinematic model, cam profiles 

were obtained, and the kinematic behavior of cam systems was 

determined. Sun et al. [20] proposed an optimization approach 

for cam mechanisms' motion curves, aiming to achieve the 

lowest maximum acceleration. Optimal kinematic 

characteristics of cam mechanisms were examined using 

NURBS for the follower function [18]. Further research 

focused on enhancing the accuracy of kinematics and 

dynamics for conjugate cam mechanisms, thereby reducing 

system vibration [21, 22]. A polynomial fitting-based design 

for electronic cams [23]. 

Alaci et al. [24] proposed a cam curvature for cam knife-

edge followers, which have been used in engines and fuel 

pumps, and simulated using finite element analysis on CATIA 

software [6]. In cam curve design, John et al. [25] and Myszka 

[26] introduced graphical and analytical methods for

determining cam curves. However, these studies did not

address cam curve optimization and did not consider design 

parameters for cam knife-edge followers. To date, there has 

been a lack of research on the optimal design of cam knife-

edge mechanisms. Notably, the computation of cam curves 

constitutes an essential step in the design of cam knife-edge 

follower mechanisms, as the base circle radius affects the 

pressure angle and cam size. The pressure angle, in turn, 

influences the transmission ability between the cam and the 

follower. Consequently, this study aims to develop a novel 

method for optimizing the cam curve of cam knife-edge 

followers, which considers not only the cam mechanism size 

but also the pressure angle. The potential energy is employed 

as the objective function, and the finite element method is 

utilized for computing the problem. The Newton-Raphson 

method is subsequently implemented to solve the proposed 

problem. 

The remainder of this study is organized as follows: Section 

2 presents the formulation of the optimization problem. 

Section 3 introduces the finite element method for computing 

the cam curve. Section 4 describes the Newton-Raphson 

algorithm for problem-solving. Section 5 discusses the results, 

and finally, conclusions are provided in Section 6. 

2. FORMULATION OF OPTIMIZATION PROBLEMS

This section presents the procedure in order to build the 

objective function for designing the cam curve of the cam 

knife-edge follower. The cam curve is achieved from the 

“deformation” of the initial curve. The description of the cam 

curve is shown in the section below. 
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2.1 Description for cam knife-edge follower 

The description of cam knife-edge follower is shown in 

Figure 1. The initial cam curve, denoted by Co(x), is chosen as 

a circle. The circle is defined as the base circle of the cam 

knife-edge follower. The current curve (cam curve), denoted 

by C(x), is obtained from the “deformation” of the initial curve. 

The cam curve is described by the curvilinear coordinate 

systems. The tangent vectors on the initial and current cam 

curves are respectively denoted by A1 and a1, d and n are 

described for the follower motion direction and normal vector 

of cam curve, respectively. The transfer function of the 

follower, denoted by y, presents the lift of the follower 

movement. 

Figure 1. Geometry description of cam knife-edge follower 

In order to compute the cam curve, the transfer function 

must be given. In general, the given transfer function, denoted 

by yo, is a function that depends on the angle of cam shaft. It 

can be written as: 

𝑦𝑜 = 𝑓 (α), (1) 

where, α is angle of cam shaft. It can be calculated from Figure 

1. 

α = 𝑎𝑐𝑜𝑠 (𝐝. 𝐱1). (2) 

The desired cam curve can be described by using the 

curvilinear coordinate  as shown in Eq. (3). 

𝐱 = 𝐱 (). (3) 

The tangent vector a1 and a1 of the co-variant and contra-

variant to coordinate  at x on the current curve C(x) are: 

𝐚1 =
∂𝐱 

∂ ()
, (4) 

𝐚𝟏 = a11𝐚𝟏. (5) 

The contra-variant basis and the co-variant basis at x of the 

current cam curve, denoted by a11 and a11, can be computed as: 

a11 = 𝐚1. 𝐚1, (6) 

a11 = [a11]−1. (7) 

The geometry parameters on the initial curve are likewise 

determined with the current curve. 

The current transfer function is computed from Figure 1. 

𝑦 = 𝐱. 𝐝 − 𝑟𝑜 , (8) 

in which, ro is base circle radius. The follower motion direction 

d can be calculated by: 

𝐝 =
𝐱

‖𝐱‖
. (9) 

The normal vector n is determined as: 

𝐧 =
𝐚𝟏

‖𝐚𝟏‖
. (10) 

2.2 Objective function 

As discussion above, the initial cam curve is deformed to 

create the cam curve. In order to obtain the desired cam curve, 

the difference between the given transfer function yo and the 

current transfer function y must be equal to zero (y-yo=0). To 

impose the constraint of the transfer function, the potential 

energy, denoted by 𝑝 , is used to express the objective 

function as follows: 

 𝑝 =
𝑘

2
∫(𝑦 − 𝑦𝑜)2

𝛼

dα, (11) 

where, k is constant parameter. 

For only the constraint of the transfer function during the 

deformation, this is not enough to stabilize the position 

between two points, thus the constraint of stabilization is 

added to the solution. Using the numerical stabilization [27], 

the stabilized constraint, denoted by 𝑠, can be expressed as: 

 𝑠 =
𝜇

2
∫ (𝐴11𝑎11 − 2𝑙𝑛

‖𝐚1‖

‖𝐀1‖
)

2

𝛼

dα, (12) 

in which, 𝜇 is stabilized parameter. The other parameters, i.e., 

A11, a11, a1, A1 are calculated in the previous section. 

From Eq. (11) and Eq. (12), the cam curve is obtained by 

minimizing the following equation: 

min  =  𝑝 +  𝑠

=
𝑘

2
∫(𝑦 − 𝑦𝑜)2

𝛼

dα +

𝜇

2
∫ (𝐴11𝑎11 − 2𝑙𝑛

‖𝒂1‖

‖𝑨1‖
)

2

𝛼

dα

(13) 

2.3 Variation of the design function 

The variation of design function needs to be computed for 

minimizing Eq. (13). Taking the variation of the potential 

energy as shown in Eq. (11) is: 

δ𝑝 = 𝑘 ∫(𝑦 − 𝑦𝑜)(𝛿𝑦 − 𝛿𝑦𝑜)

𝛼

dα, (14) 
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where, 𝛿𝑦𝑜  and 𝛿𝑦 are calculated from Eq. (1) and Eq. (8).

Computing 𝛿𝑦𝑜and 𝛿𝑦 , and then substituting into Eq. (14), the

variation of the potential energy leads to: 

δ𝑝 = 𝑘 ∫(𝑦 − 𝑦𝑜)𝐛.

𝛼

δ𝐱 dα, (15) 

in which, the vector b is set by: 

𝐛 = 𝐝 + 𝐁𝐫. (16) 

In Eq. (16), the second-order tensor B and the vector r are 

computed as: 

𝐁 =
1

‖𝐱‖
(𝐈 − 𝐝𝐝),

𝐫 = 𝐱 + 𝑐1𝒙𝟏

(17) 

Here, I is the second-order identity tensor and c1 =
𝜕𝑦𝑜

𝜕𝛼

1

√1−𝑐𝑜𝑠𝛼2
. 

Likewise, the variation of the stabilization constraint is 

computed as: 

δ𝑠 = 𝜇 ∫(𝐴11 − 𝑎11)

𝛼

𝒂1. 𝜹𝒂1dα. (18) 

3. FINITE ELEMENT METHOD ON OPTIMAL

COMPUTATION

This section presents the finite element (FE) method for 

solving Eq. (13). The discretized form is presented by finite 

element discretization of the curve. The node is denoted by Xe. 

3.1 Finite element discretization 

For cam curve, the quadratic finite element in 1D is used for 

computation. The FE discretization of cam curve is shown in 

Figure 2 (a). The shape function of the quadratic finite element 

is presented in Figure 2 (b). The shape function can be 

expressed as N𝑖 = N𝑖().

Figure 2. FE discretization and quadratic finite element of 

cam curve 

In each element, the geometry is approximated by the nodal 

interpolations: 

𝐱 = ∑ 𝐍 𝐱𝐞

𝑛

𝑒=1

, (19) 

where, 𝐍 = 𝐍() and n is the number of nodes, respectively. 

Eq. (19) and Eq. (4) can be written by shorthand notation: 

𝐱 = 𝐍 𝐱𝐞, (20) 

𝐚𝟏 = 𝐍, 𝐱𝐞, (21) 

with 𝐍, = 𝛛𝐍 𝛛⁄ . The variation of x and a1 is written as:

δ𝐱 = 𝐍 𝛿𝐱𝐞, (22) 

δ𝐚𝟏 = 𝐍, 𝛿𝐱𝐞, (23) 

3.2 Discretized form equation 

By substituting the finite element discretization in Eq. (22) 

and Eq. (23) into Eq. (15), the variations of the potential 

energy in discretized form δ𝑠
𝑒
 can be rewritten as: 

δ𝑝
𝑒 = δ𝐱𝐞

𝐓 ∫  𝐍𝐓𝑘(𝑦 − 𝑦𝑜)𝐛.

𝛼𝑒

 dα𝑒 , (24) 

Likewise, substituting the finite element discretization in Eq. 

(22) and Eq. (23) into Eq. (18), the variation of stabilized

constraint equation in the discretized form δ𝑠
𝑒

is:

δ𝑠
𝑒 = δ𝐱𝐞

𝐓 ∫ 𝐍,
𝐓 𝜇(𝐴11 − 𝑎11)

𝛼𝑒

𝒂1. dα𝑒 . (25) 

The cam curve is obtained when the variation of both the 

potential energy and the stabilized constraint equation in 

discretized form is set to zero for all variation δ𝐱𝑒. From Eq.

(24) and Eq. (25), the total discretized from equation can be

written as:

δ
𝑒 = δ𝑝

𝑒 + δ𝑠
𝑒

= δ𝐱𝐞
𝐓  ( ∫ 𝐍𝐓𝑘(𝑦 − 𝑦𝑜)𝐛.

𝛼𝑒

 dα𝑒 +

∫ 𝐍,
𝐓 𝜇(𝐴11 − 𝑎11)

𝛼𝑒

𝒂1. dα𝑒) = 0  δ𝐱𝑒

(26) 

3.3 Finite element tangent matrix 

3.3.1 Tangent matrix of the potential energy 

From Eq. (15), the linearization of the potential energy 

yields: 

∆δ𝑝 = ∫ δ𝐱 𝑘 (𝐛𝐛)
𝛼

∆𝐱 dα +

∫ δ𝐱 𝑘(𝑦 − 𝑦𝑜)𝐄 ∆𝐱

𝛼

dα
. (27) 
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In Eq. (27), E is set by: 

𝐄 = (2 −
1

‖𝐱‖
𝐝. 𝐫) 𝐁 − 𝐁(𝐫𝐝 − 𝐝𝐫)𝐁 +

c2𝐁(𝒙𝟏𝒙𝟏)𝐁,

 (28) 

with 

c2 =
𝜕2𝑦𝑜

𝜕𝛼2

1

√1 − 𝑐𝑜𝑠𝛼2
+

𝜕𝑦𝑜

𝜕𝛼

𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

(1 − 𝑐𝑜𝑠𝛼2)
 . (29) 

Substituting Eq. (22) into Eq. (27), the linearization of the 

potential energy can be expressed as: 

∆δ𝑝
𝑒 = δ𝐱𝑒

𝑇𝐊𝑝∆𝐱𝑒 , (30) 

in which, 𝐊𝑷 is the tangent matrix of the potential energy. It is

symmetric matrix and can be described as: 

𝐊𝑷 = ∑ ∫  𝑘𝐍𝐓(𝐛  𝐛)
𝛼𝑒

𝐍 dα𝑒 +

𝑛

𝑒=1

∫  𝑘𝐍𝐓(𝑦 − 𝑦𝑜)𝐄 𝐍

𝛼𝑒

dα𝑒

(31) 

3.3.2 Tangent matrix of stabilized constraint 

The linearization of stabilized constraint is computed from 

Eq. (18): 

∆δ𝑠 = ∫
2𝜇

𝑎11
2

𝛼

𝛿𝒂1. (𝒂1 𝒂1)∆𝒂1dα +

∫ 𝜇(𝐴11 − 𝑎11)

𝛼

𝛿𝒂1. ∆𝒂1dα.
(32) 

Substituting Eq. (23) into Eq. (32), the linearization of 

stabilized constraint can be expressed as: 

∆δ𝑠
𝑒 = δ𝐱𝑒

𝑇𝐊𝑠∆𝐱𝑒 , (33) 

where, Ks is the tangent matrix of the stabilized constraint. It 

is symmetric and can be written as: 

𝐊𝑠 = ∑ ∫
2𝜇

𝑎11
2

𝛼𝑒

𝐍,
𝑇(𝒂1𝒂1)𝐍, dα𝑒

𝑛

𝑒=1

+

∑ ∫ 𝜇(𝐴11 − 𝑎11)

𝛼𝑒

𝐍,
𝑇 𝐍, dα𝑒

𝑛

𝑒=1

.

(34) 

4. ALGORITHM FOR SOLVING CAM CURVE

The nonlinear Eq. (26) can be written as: 

𝐟 (𝐱) ≈ 𝐟(𝐱𝑒) = 0  δ𝐱𝑒. (35) 

Eq. (35) is solved by Newton – Raphson method. The new 

solution of the current cam curve is: 

𝐱𝒊+𝟏 = 𝐱𝒊 + ∆𝐱𝑖+1, (36) 

with 

∆𝐱𝑖+1 = −
𝐟 (𝐱𝒊)

𝐟′(𝐱𝒊)
(37) 

In here, 𝐟′(𝐱𝒊) =
∂𝐟

∂𝐱
 is the tangent matrix as shown in Eq. 

(31) and Eq. (34). Thus, the tangent matrix can be written as:

𝐟′(𝐱𝒊) =K= 𝐊𝑝 + 𝐊𝑠. (38) 

The algorithm for achieving the optimal cam curve is 

presented in Table 1. 

Table 1. The computation algorithm for solving cam curve 

No. Step Do 

1 
Input 

parameters 

Newton loop tolerance 0, constant parameter 

k, stabilized parameter 𝜇, parameter of cam 

knife-edge follower (L, yo, ro) 

2 
Defined 

initial curve 

- Choosing initial curve as the base circle;

- Making FE discretization of initial curve;

- Computing and assembling elements.

3 
Newton-

Raphson loop 

- Calculating f(xi), tangent matrix of potential

energy Kp in Eq. (31) and tangent matrix of

stabilized constraint Ks in Eq. (34);

- Computing ∆𝐱𝑖+1 in Eq. (37);

- Update solution

𝐱𝒊+𝟏 = 𝐱𝒊 + ∆𝐱𝑖+1

- Until: Stopping criterion 0

5. RESULTS AND DISCUSSIONS

In this section, the cam knife-edge with the reciprocating 

follower is optimized with four segments, which are rise, dwell, 

fall, and dwell. The rise motion is from zero to lift L in 120°, 

dwell at L in 90°, then fall to zero in 90°, and the last dwell at 

zero in 60°. The lift of the follower is 3 mm. The transfer 

function for the rise and return motion is used is the fifth 

polynomial function. The transfer function in Eq. (1) can be 

expressed as: 

𝑦𝑜 = 𝑦(α) = 𝑎0 + 𝑎1𝛼 + 𝑎2𝛼2 + 𝑎3𝛼3 + 𝑎4𝛼4 + 𝑎5𝛼5, (39) 

where, ai(i=0÷5) are coefficients of the polynomial function. 

These coefficients are determined from the boundary 

conditions of the first and the end points in each segment. 

The pressure angle  is determined by the angle between 

the direction motion of the follower and the normal direction. 

It is directly affected to transmission of cam knife-edge 

follower motion. It can be computed from Figure 1. 

 = 𝑎𝑐𝑜𝑠 (𝐝. 𝐧). (40) 

The optimal cam curve is obtained by solving Eq. (26) using 

the algorithm in Table 1. Moreover, the optimal parameters of 

cam, i.e., base circle radius and pressure angle are also 

achieved. The cam size is depended on the base circle; 

choosing the best base circle radius is thus an important role 

in cam calculation. The pressure angle of cam is also an 

important parameter that affects to the transmission cam 

mechanism. It can be sated that the pressure angle decreases 

when the base circle radius of the cam increases. Normally, the 

pressure angle of cam mechanisms is no larger than 30°. 

Therefore, the optimal values of the base circle radius and the 

pressure angle must be considered in computing the cam knife-
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edge follower. Computing the base circle has to satisfy the 

condition of the pressure angle, i.e., 300. For this, the result

of the optimal cam curve is presented in Figure 3, in which the 

base circle radius is 5mm, and the maximum value of the 

pressure angle is computed as 29.3619°. 

Figure 4 shows the displacement, velocity and acceleration 

of the cam knife-edge between given transfer function and FE 

solution. The maximum error between EF solution and given 

transfer function is 5.4363×10-5. 

Figure 5 depicts the change of the pressure angle  during 

the cam motion angle in one revolution (a=0÷360°). Values of 

the pressure angle at all positions of cam satisfy the condition 

of transmission of the cam mechanism. 

In order to evaluate the constant parameters in cam 

optimization, Figure 6 describes the relation between the 

constant parameter k and the error of the EF solution. It is 

clearly seen that when the value of the constant parameter 

increases, the accuracy of the FE solution increases. The 

pressure angle decreases when the constant parameter 

increases as shown in Figure 7. For this, the lager the value of 

the constant parameter, the more accurate solution is. Thus, in 

order to obtain the exact solution, the value of the constant 

parameter may need to approach the infinity. 

Figure 8 and Figure 9 present the effect of the ratio k/ on 

the accuracy of cam design and the pressure angle. From the 

observarion of Figure 8, the accuracy of FE solution increases 

when the ratio k/ increases; otherwise, the pressure angle is 

reduced (see Figure 9). When the ratio k/ increases until some 

values (k/=30, 40, 50), the accuracy does not increase, and 

the pressure angle does not decrease any more (see Figure 9). 

Figure 3. Designed cam curve 

a) Displacement

b) Velocity

c) Acceleration

Figure 4. Kinematics of cam knife-edge follower 

Figure 5. Pressure angle of the cam mechanism 

Figure 6. The relation between constant parameter and error 

of the FE solution 
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Figure 7. The graph between constant parameter with 

pressure angle 

Figure 8. The effect of k/ on the accuracy of FE solution 

Figure 9. The effect of k/ on the pressure angle 

6. CONCLUSIONS

In this study, the procedure of computing the cam knife-

edge follower has been given as follows: 

- The cam parameters are simply computed by using

the curvilinear coordinate systems such as the cam curve and 

the pressure angle; 

- The objective function in cam curve design is

established by using the potential energy, which is the 

difference between the given transfer function and current 

transfer function; 

- The stabilization function is added in order to

stabilize the position between two points; 

- For solving the objective function, the finite element

discretization has been used. Additionally, the Newton-

Raphson method is applied in the computation algorithm; 

After all the above computations, the cam curve is obtained, 

which considers both the cam size and the pressure angle. For 

this, the base circle radius is selected to optimal cam size. 

Moreover, the pressure angle is computed to satisfy the 

transmission condition of the cam mechanism. Additionally, 

the effect of constant parameter and the stabilized parameter 

on the design cam curve has been discussed. From this, the 

designer can choose the suitable parameters in the 

computation of cam curves for cam knife-edge follower 

mechanisms. However, using the potential energy, the 

constant parameter must choose the large value to obtain the 

exact solution for the finite element method. With this 

approach method, the important parameters of the cam knife-

edge follower are flexibly the evaluation and optimal design. 

This is an essential characteristic of the cam design. In future 

research, this method could explore the application of other 

related fields in other contexts and the potential limitations of 

the methodology. 
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NOMENCLATURE 

yo given transfer function, mm 

y current transfer function, mm 

ro base circle radius, mm 

a coefficients of the polynomial function 

d vector of follower motion direction 

x1 vector horizontal direction 

x desired cam curve 

C(x) current curve 

Co(x) initial curve 

a1 tangent vector of the co-variant on current 

curve 

a1 tangent vector of the contra-variant on 

current curve 

A1 tangent vector of the co-variant on given 

curve 

n normal vector 

b, r vectors 

B, E second-order tensors 

I second-order identity tensor 

N shape functions 

k constant parameter 

K tangent matrix 

f nonlinear equation 

Greek symbols 

 angle of camshaft, o

 design function 

∆ linearilization 

δ variation 

𝜇 stabilized parameter 

 pressure angle, o 

Subscripts 

p potential energy 

s stabilized constraint 

e Node of element 
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