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Investigating and managing water surface profiles over obstructions in waterways is a 

critical aspect of water resources engineering. To address this challenge, numerous 

studies have been conducted, emphasizing the importance of controlling water surface 

variations along waterways. This study evaluates the feasibility of employing an explicit 

numerical model to simulate the water surface profile over a V-notch weir. 

Experimentally, the water surface profile was measured for flow rates ranging from 10 

to 70 liters per second. An explicit numerical solution for the water surface profile was 

developed based on the four-point box partial differential equation principle. The Nash-

Sutcliffe Efficiency (NSE) was calculated to assess the agreement between the 

experimental and numerical results. With an average NSE value of 0.975, the proposed 

explicit numerical model demonstrated a high level of convergence with experimental 

measurements, indicating its potential for accurately simulating water levels above the 

weir. 
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1. INTRODUCTION

The water surface profile is a critical characteristic of open 

channel flow. In these waterways, various obstacles may 

influence the water surface profile, making it essential to 

understand the flow behavior as it traverses the waterway. 

Weirs are among the most common flow measurement 

instruments installed across the width of waterways or 

streams, significantly impacting the water surface profile. 

Numerous mathematical and empirical studies have 

investigated the prediction and measurement of the water 

surface profile over weirs, each yielding specific findings due 

to their limitations and boundary conditions. 

Experimental and numerical investigations have been 

conducted to examine the stage-discharge relationship through 

rectangular sharp-crested weirs. By comparing different data 

sets with a statistical model, the numerical approach 

demonstrated acceptable agreement in replicating the flow 

behavior over rectangular sharp-crested weirs [1]. 

Additionally, a numerical study was developed to measure the 

flow over triangular and trapezoidal weirs during free-flow 

conditions, finding that the numerical model using nonlinear 

regression analysis closely matched the flow characteristics 

[2]. 

The flow pattern over an elliptical weir was investigated by 

establishing a regression analysis of the parameters 

influencing the flow regime. The results showed that, in 

addition to the short and long radius, the crest height ratio to 

the flow depth in front of the weir significantly impacts the 

water surface profile [3]. Several studies have also examined 

the flow characteristics of labyrinth weirs, both experimentally 

and theoretically. One study found that the flow ratio to crest 

height influences the water surface profile, with a reduced 

impact when this ratio increases [4]. Other research confirmed 

that the length magnification or head-to-width ratio affects the 

flow pattern over a triangular labyrinth weir [5, 6]. 

As part of the flow characteristics analysis, the water 

surface profile over a triangular labyrinth weir was simulated 

using the volume of fluids methodology [7]. Solution 

uncertainty was determined using the Grid Convergence Index 

(GCI), and the volume of fluids results were compared to 

experimental work, showing an acceptable agreement from a 

practical perspective [8]. 

Several studies have focused on the flow over the broad-

crested weir, investigating flow characteristics experimentally 

[9], through parametric studies using dimensional analysis 

[10, 11], and employing relaxation techniques [12]. Further 

investigations have addressed the impact of dimensions or 

shapes of a broad-crested weir on flow behavior in open 

channels [13, 14]. 

A review of the existing literature reveals considerable 

scientific efforts to study flow behavior over weirs due to their 

importance in water resource management. In this research, 

further investigation will be undertaken to assess the 

feasibility of employing a numerical model for calculating and 

estimating the water surface profile over a V-notch weir. 

2. NUMERICAL SOLUTION METHODOLOGY

The Saint-Venant Equation represents the mass and 

momentum conservation principle of flow in natural streams 

and rivers. Solving the Saint-Venant numerically, including all 

the relevant characteristics, was explained in several well-

known scientific articles [15-18]. However, the control 

volume of flow shown in Figure 1 includes the inflow, outflow, 
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and change in storage over time (t). Furthermore, in open 

channels, the (Δ𝑥) can be considered a small value; thus, the 

continuity equation can be numerically represented and 

written as shown in Eq. (1), where (A) is the cross-section area 

of the control volume. 

 

 
 

Figure 1. Continuity and momentum control volume 
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Likes that the momentum equation is presented herein for 

the control volume, as shown in Eq. (2), where (g) is the 

acceleration due to gravity, (So) and (Sf) is the bed slope and 

water surface slope, respectively.  
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Bernoulli's Equation is utilized to predict the water surface 

profile in waterways subjected to gravity flow [19]. Bernoulli's 

Equation for the flow of fluid through the control volume can 

be written as shown in Eq. (3), in which (Z) is the bed elevation; 

(y) is the depth of water; (V) is the velocity of flow, and (ht) is 

the loss of energy between the inflow section (1) and outflow 

section (2). 
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The implicit finite difference method is one of the most 

credible techniques for solving partial differential equations 

problems [20, 21]. The time-distance (x-t) grid shown in 

Figure 2 represents the scheme for solving the derivative 

parameters included in Eq. (1), Eq. (2), and Eq. (3). The 

solution will proceed simultaneously from the time step to the 

next time step along the distance. 

The derivative of the equations as mentioned earlier (1) and 

(2) over distance can be shown in the following shape in Eq. 

(4) and (5), respectively, where ϕ is the distance weight 

parameter. 
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Figure 2. The implicit finite difference time-distance grid 

 

While the derivative over time for Eqns. (1) and (2) is 

shown in Eq. (6) and Eq. (7), respectively. 
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Furthermore, constant terms shown in Eq. (1) and Eq. (2) 

can be represented as expressed below, 
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Finally, substituting the derived forms and constants in 

continuity Eq. (1) and the momentum Eq. (2) will lead to the 

final shape of these equations as shown in Eq. (11) and Eq. (12) 

respectively, 
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The elements that have subscript time step (j) in the 

Continuity Eq. (11), and Momentum equation, Eq. (12), are 

already known either from the boundary condition or from the 

previous step of the Saint-Venant equation solution. Also, the 

cross-section area (A) is a water depth (h) function. Therefore, 

the only missing or unknown elements are the flow discharge 

(Q) and water depth (h) for the next time step (j+1) at both 

nodes (i) and (i+1). However, besides the initial and boundary 

condition, the final forms of the continuity equation and 

momentum equation can be utilized for simultaneously 

estimating the value of discharge and flow depth. 

Speaking of which boundary condition status for the flow in 

open channels, the boundary condition upstream of the flow 

regime can be considered either the flow hydrograph (Q) or 

stage hydrograph (h) during the simulation time. It is also 

possible to adopt the values of the flow hydrograph (Q) or 

stage hydrograph (h) downstream of the flow regime, but it is 

possible to consider either a looped or single rating curve and 

critical depth of flow for this purpose. 

 

 

3. EXPERIMENTAL TESTS  

 

Numerous laboratory measurements were made of a range 

of flow discharges over a V-notch Triangular weir. Figure 3 

shows the laboratory system utilized during this study and the 

setup during the running of the test. 

The flow feeder was connected to an ultrasonic flow meter 

that can measure and read the discharge value upstream of the 

weir over time. Also, the gauge pointer was used to read the 

flow depth before and after the weir at a certain distance. These 

gage readings help to get the shape of the water surface profile 

over the weir. Table 1 lists the range of discharge that was used 

during the experimental portion of this study.  

 

 
 

Figure 3. The experimental setup rig system 

4. RESULTS AND DISCUSSION 

 

The explicit numerical solution was established according 

to the four-point box partial differential outline principle. The 

steady flow hydrograph was employed as an upstream 

boundary condition, while the known water depth (stage 

hydrograph) was used as a downstream boundary condition. 

Thus, the water surface elevation value would be estimated as 

a result of the numerical solution of Eqns. (11) and (12) 

simultaneously. Figures 4-10 show the correlation between the 

simulated water surface profile and the observed profile during 

the set of discharges previously mentioned in Table 1.  

The results of comparing the calculated practically water 

surface levels with those calculated by the proposed numerical 

method, presented in the previous Figures 4-10, showed a 

great convergence. However, in order to evaluate the 

performance of the relationship between the amount of 

observed water surface elevation over the weir and the 

calculated values by the explicit numerical solution, a Nash-

Sutcliff Error measurement was carried out based on the 

credibility and reliability of this methodology [22-24]. Eq. 

(13) represents the Nash-Sutcliff Error, where ℎ𝑜𝑏𝑠  is the 

measured quantity, ℎ𝑠𝑖𝑚 is the mimic quantity, and ℎ𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the 

mean of the measured quantity. 

 

𝑁𝑆𝐸 = 1 −
∑(ℎ𝑜𝑏𝑠−ℎ𝑠𝑖𝑚)2

∑(ℎ𝑜𝑏𝑠−ℎ𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2  (13) 

 

The range of the Nash–Sutcliffe error is from 1 to −∞. If 

NSE=1, that means a great match of the mimicked to the 

measured variable. When the NSE=0, model forecasts are 

accurate to the average filed data. Finally, if the NSE < 0 

indicates that the model simulation results are far from the 

average observed data. 

Table 1 lists the value of NSE corresponding to each tested 

discharge in this study. It is noted that the average value of 

NSE=0.975 which is close to 1, indicating the high 

convergence between the values of the water level above the 

weir measured using the proposed explicit numerical model 

compared to the results obtained experimentally. 

By observing the discharge of the water released, shown in 

Figures 4-10, over the weir used in this study, one can note 

that with the increase in the discharge values, there is a high 

agreement between the results obtained practically with those 

calculated theoretically. This is because an increase in the 

discharge will lead to an increase in the velocity head above 

the weir and, thus, an increase in the momentum force, making 

the water's surface push farther. On the other hand, as for the 

low discharges, it works to reduce the velocity head, which 

leads to a decrease in the momentum of the water and makes 

the curve of the water surface closer to the weir. 

 

Table 1. The Nash–Sutcliffe error of the proposed approach 

 
Test No. Discharge (L/s) NSE 

1 10 0.984 

2 20 0.996 

3 30 0.996 

4 40 0.976 

5 50 0.962 

6 60 0.962 

7 70 0.952 

Average NSE = 0.975 
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Figure 4. The shape of water surface profile flow=10 L/s 

 

 
 

Figure 5. The shape of water surface profile flow=20 L/s 

 

 
 

Figure 6. The shape of water surface profile flow=30 L/s 

 
 

Figure 7. The shape of water surface profile flow=40 L/s 

 

 
 

Figure 8. The shape of water surface profile flow=50 L/s 

 

 
 

Figure 9. The shape of water surface profile flow=60 L/s 
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Figure 10. The shape of water surface profile flow=70 L/s 

 

 

5. CONCLUSIONS 
 

The water surface profile over the V-notch weir was 

measured both experimentally and numerically in this study. 

The results of this study indicate a high matching between the 

numerical model and experimental measurement. Speaking of 

that, the Nash-Sutcliffe error was calculated, and it was found 

that average NSE=0.975, which is very close to 1 and indicates 

a great ability of the model to mimic the experimental results. 

This will allow the opportunity for water resources engineers 

to have a tool that can predict the depth of the water during 

unexpected flow events. 

Further investigations may be carried out for future work to 

express the validity of the proposed model with another types 

of weirs. 
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