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Dioscorea, lauded for its environmental sustainability and versatility, is pivotal in various 

industries, ranging from food to medicine. The significant yields it offers, coupled with low 

cultivation inputs and substantial nutritional benefits - including high protein content and 

minimal sugar levels, necessitate precision in yield predictions and growth management. 

This, in turn, fosters the evolution of mechanized agriculture and automation. To address 

this need, a novel methodology amalgamating digital image processing and machine 

learning algorithms has been established to accurately determine the mineral nutrient content 

in Dioscorea leaves. This methodology initiates with the separation of the foreground and 

background in leaf images, achieved through the implementation of the H-component OTSU 

algorithm. Subsequently, the computation of 54 color features is carried out, and machine 

learning techniques are harnessed to form models that delineate image features in correlation 

with a SPAD value exceeding 0.9. The aspiration of this model development lies in the 

prediction of chlorophyll, nitrogen, phosphorus, and potassium content in Dioscorea leaves. 

It has been determined that the Multilayer Perceptron (MLP), post 100 iterations, constructs 

the most accurate model for predicting SPAD content in Dioscorea nipponica. In terms of 

nitrogen content prediction, a regression model exploiting the SL characteristic has been 

discovered to be optimal, demonstrating an R2 of 0.850. For phosphorus, a model 

incorporating the NRI characteristic has yielded an R2 of 0.819, affirming its efficacy. 

Meanwhile, potassium content prediction has been found to be most precise with a model 

centered on the Sb characteristic, as evidenced by an achieved R2 of 0.865. This cutting-

edge methodology can significantly advance the agricultural sector, particularly in the realm 

of mechanized agriculture and automation. 
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1. INTRODUCTION

A reliable estimation of mineral nutrient content during 

Dioscorea growth is a fundamental prerequisite for applying 

sound and rational fertilization strategies. In today's 

agricultural production and precision agriculture, the urgency 

of prompt, non-destructive diagnosis, and estimation of crop 

growth has emerged as a pressing issue [1, 2]. Although 

chemical analysis is the prevalent method due to its accuracy, 

and also forms the basis for various extended methods, it is 

characterized by its complexity, time-consuming nature, and 

potential for environmental pollution caused by the use of 

reagents [3]. 

Current research on harnessing digital image technology for 

crop mineral nutrient detection primarily focuses on leaf scale, 

due to its lower susceptibility to interference factors such as 

soil, background, and measurement environment, leading to 

comparatively ideal color feature data. Examining the 

correlation between leaf scale image features and mineral 

nutrient content provides insights into the biological 

significance between digital image color features and crop 

nutrient absorption, laying a theoretical and methodological 

foundation for crop mineral nutrient content detection via 

close-range, non-contact measurement methods [3]. 

Technologically advanced tools and methods, including 

ground object spectrometers and hyperspectral imaging 

devices, have been exploited for detecting crop physiological 

status and growth information. These devices, however, are 

expensive and necessitate professional operators for sampling. 

It has been found that the first two bands of spectral data, most 

sensitive to the mineral nutrient content of crops, are within 

the visible light region. This discovery implies that digital 

images captured in the visible light range could present a cost-

effective and user-friendly solution for assessing the mineral 

nutrient status of field crops [4]. 

Chlorophyll content of rice leaves was assessed using a 

narrowband dual camera system, and a strong correlation was 

found between the Leaf Greenness Index and the chlorophyll 

content of rice leaves [4]. Evidence from previous studies 

indicates that the mathematical processing and combination of 

basic image features, particularly color features, yield 

structural parameters that demonstrate a stronger correlation 

with the mineral nutrients, particularly nitrogen content, of the 

crop [5]. Indices such as (G-R), G/R, NGI, NRI, and hue index 

were utilized to estimate rice biomass, nitrogen content, and 

leaf area index (LAI), revealing that the (G-R) and G/R indices 

surpassed other indicators in their estimations [6]. However, a 

single green component in the RGB color space was found 

insufficient for accurately representing vegetation greenness, 

as changes in the values of the red and blue components can 

also influence the perceived greenness [7]. A dark green index 

(DGCI) was introduced based on the HSI color space, and it 
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was found to correlate strongly with crop nitrogen content [8]. 

Studies exploring the relationship between various color 

components in the RGB color space and chlorophyll content 

in wheat and rye leaves under different field environment 

weather conditions found that the indicators (R-B)/(R+B) 

correlated strongly with leaf chlorophyll content under varying 

weather conditions [9]. 

Moreover, leaf color indicators sensitive to nitrogen content 

in wheat during the two stages of turning green and jointing 

were investigated, with the best correlation found between the 

turning green period and plant nitrogen content, and color 

feature indicators G/R and NRI [10]. A mobile app was 

developed to collect images of corn leaves through contact 

photography, and correlation analysis with chlorophyll values 

was conducted. Models were established using stepwise 

regression and neural networks, with R2 and RMSE of 0.74 

and 6.2 for the stepwise regression model, and 0.82 and 5.1 for 

the neural network model, respectively [3]. Ordinary digital 

cameras were used to directly collect wheat images in the field, 

and 12 statistical features of RGB color space were extracted 

as image evaluation indicators. A neural network model was 

established for predicting nitrogen content in wheat leaves, 

indicating that the neural network algorithm outperformed 

other univariate regression methods [11, 12]. 

Digital images of sesame seeds were collected and 12 color 

indicators were extracted from RGB and Lab color spaces. A 

correlation analysis was conducted between these color 

indicators and chlorophyll content, and a random forest 

prediction model was established, yielding an R2 of 0.9 [13]. 

In summation, the field of crop mineral nutrition assessment 

based on imaging has predominantly witnessed researchers 

focusing on the relational model between a single nutrient 

element and crop growth status. Yet, research on constructing 

a prediction model for multiple mineral nutrients in crops is 

not as extensive. In this study, a combination of digital image 

processing technology and machine learning technology is 

utilized to construct prediction models correlating leaf image 

information with SPAD, nitrogen, phosphorus, and potassium 

elements of Dioscorea plants. The intent of this study is to 

employ digital images and machine learning technology to 

formulate a prediction model for multiple mineral nutrients of 

Dioscorea. 

 

 

2. MATERIAL AND METHOD 

 

2.1 Acquisition of images and determination of mineral 

nutrient element content 

 

This study was executed in a field located at Songgang 

Village, Nanzhuang Town, Li County, Baoding City, Hebei 

Province, China, within the Hebei Agricultural University 

premises. The subject of the investigation was yam, grown in 

sandy loam soil with basic physiochemical properties, 

including organic matter (7.51 g/kg), NH4'-N (2.24 mg/kg), 

NO-N (6.81 mg/kg), alkali-hydrolyzed nitrogen (29.05 mg/kg), 

available phosphorus (7.08 mg/kg), and available potassium 

(65.88 mg/kg). Fertilizers such as urea (N46%), 

superphosphate (P; 0; 12%), and potassium sulfate (K; 0; 50%) 

were tested with 12 distinct fertilization levels, applying 

conventional fertilization management practices. The 

application of nitrogen fertilizer was split into a 3:7 base-to-

topdressing ratio, while the entire phosphorus fertilizer was 

applied once, and potassium fertilizer was applied in a 4:6 

base-to-topdressing ratio. The experimental design followed a 

randomized complete block, and each plot measured 2.1 × 4 = 

8.4 m, with each treatment replicated thrice, totaling 36 plots. 

Samples were collected on September 27, 2017, with eight 

leaves randomly chosen from each plot. After discarding 

incomplete leaves, 259 leaves were procured, stored in a 

container with an ice pack, and swiftly transported to the 

laboratory. Images were captured using a Sony FDR-XP35 4K 

high-definition camera under laboratory fluorescent lighting 

conditions. Post image acquisition, a SPAD-502PLUS 

portable chlorophyll meter (Minolta Camera Co., Osaka, 

Japan) was used to determine chlorophyll content in the leaves. 

Based on their SPAD values, Dioscorea plant leaves were 

categorized into six groups for nitrogen content determination, 

with ranges of [0,10), [10,20), [20,30), [30,40), [40,50), and 

[50,60), reflecting a many-to-one relationship between color 

characteristics and nitrogen content. Nitrogen, phosphorus, 

and potassium content in the leaves were subsequently 

determined using chemical reagent methods. All images were 

preserved in JPG format, and representative images from the 

experiment are illustrated in Figure 1. 

 

2.2 Feature extraction 

 

2.2.1 Target extraction 

The OTSU method, also known as the maximum inter-class 

variance algorithm, employs clustering principles to segment 

image grayscale into two parts based on grayscale levels. This 

segmentation is achieved by maximizing the grayscale 

variance between segments while minimizing the variance 

within each segment. The calculation of variance helps 

identify an appropriate grayscale level for image segmentation. 

Thus, the OTSU algorithm can autonomously select thresholds 

for binarization during the binarization process. Regarded as 

an optimal threshold selection algorithm in image 

segmentation, the OTSU algorithm is distinguished by its 

simple computation and independence from image brightness 

and contrast. As such, the maximization of inter-class variance 

equates to the minimization of the probability of 

misclassification. The detailed process of the algorithm is 

outlined below. 

 

   
 

Figure 1. Image of Dioscorea leaves 
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Input: Original image 

Output: Blade target 

Step 1: Convert the image from RGB color space to HSI 

color space. This involves converting the red, green, and 

blue values into their hue, saturation, and intensity 

counterparts. The conversion process can be done using 

various programming languages and libraries, including 

Python, OpenCV, and NumPy. 

Step 2: Define 't' as the set threshold. Here, several 

variables are introduced: 

'w0': The proportion of foreground pixel points in the 

image after separation; 

'u0': The average grayscale of the foreground pixels after 

separation; 

'w1': The proportion of the number of subject pixels in the 

image after separation; 

'u1': The average grayscale of the separated pixels in the 

scene.  

Compute the total average grayscale of the image as 'u', 

calculated using the formula 'u = w0*u0 + w1*u1'. 

Step 3: Iterate through the 't' from grayscale levels 'L', 

with the goal of maximizing the variance between the 

foreground and background when 't' is a certain value. 

This specific 't' value becomes the threshold needed. 

The variance 'g' can be calculated using the following 

formula: 

'g = w0*(u0-u)2 + w1*(u1-u)2'. The goal is to find the 't' 

that maximizes this variance. 

 

2.2.2 Feature extraction 

The extraction of multiple features to bolster the accuracy 

of regression models has been well-documented by several 

researchers [1-3, 9, 14]. The initial images are saved in an 8-

bit RGB format, a mixed color space that leaves the color 

features vulnerable to external environmental influences such 

as lighting intensity. It has been suggested that using a set of 

invariant moments to normalize these features can provide 

positive outcomes [1, 15, 16]. The subsequent normalization 

formula for the color features can mitigate the light's impact 

on the image color, as displayed in Eqns. (1)-(3). 
 

𝑟 = 𝑅/√𝑅2 + 𝐺2 + 𝐵2 (1) 

 

𝑔 = 𝐺/√𝑅2 + 𝐺2 + 𝐵2 (2) 

 

𝑏 = 𝐵/√𝑅2 + 𝐺2 + 𝐵2 (3) 

 

Invariant moments of the image were employed, yielding a 

set of parameters that effectively eliminated the influence of 

external factors such as the environment and camera type on 

the image color. Certain color spaces utilize saturation and 

brightness as encapsulations of color perception. These color 

spaces, which include the HSI (Hue, Saturation, Intensity) 

color space, the Lab* color space (operating on three axes: 

a=green to red; b=blue to yellow; L=brightness), and the XYZ 

color space, have been employed to reduce the effect of light 

brightness on color. Eqns. (4)-(7) illustrate the conversion of 

RGB images to HSI, XYZ, and Lab* color spaces. 
 

𝐻 = {
𝜃          (𝐺 ≥ 𝐵)

2𝜋 − 𝜃 (𝐺＜𝐵)
 (4) 

 

where, 𝜃＝𝑎𝑟𝑐𝑐𝑜𝑠 {
[(𝑅−𝐺 )+(𝑅−𝐵)] 2⁄

[(𝑅−𝐺)2+(𝑅−𝐵)(𝐵−𝐺)]1 2⁄ } 

𝑆 = 1 − 3/(𝑅 + 𝐺 + 𝐵) · 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) (5) 

 

𝐼 = (𝑅 + 𝐺 + 𝐵)/3 (6) 

 

{
 
 

 
 𝑅1 = 𝑔𝑎𝑚𝑚𝑎(

𝑅

255.0
)

𝐺1 = 𝑔𝑎𝑚𝑚𝑎(
𝐺

255.0
)

𝐵1 = 𝑔𝑎𝑚𝑚𝑎(
𝐵

255.0
)

 (7) 

 

where, 𝑔𝑎𝑚𝑚𝑎(𝑥) = {
(
𝑥+0.055

1.055
)
2.4

(𝑥 > 0.04045)
𝑥

12.92
                 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

 

 

[
𝑋
𝑌
𝑍
] = [

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] ∗ [

𝑅1
𝐺1
𝐵1

] (8) 

 

𝐿 = {
116 × 𝑓(𝑌/𝑌𝑛) − 16.0; 𝑖𝑓 𝑌/𝑌𝑛 > 0.008856

903.3 × (𝑌/𝑌𝑛);              𝑖𝑓 𝑌/𝑌𝑛 ≤ 0.008856
 (9) 

 

𝑎∗ = 500[𝑓(𝑋/𝑋𝑛) − 𝑓(𝑌/𝑌𝑛)] (10) 

 

𝑏∗ = 200[𝑓(𝑌/𝑌𝑛) − 𝑓(𝑍/𝑍𝑛)] (11) 

 

where, 𝑓(𝑡) = {
1/3 (

6

29
)
3

𝑡 + 4/29, 𝑖𝑓 𝑡 ≤ 0.008856

𝑡
1

3                                  𝑖𝑓 𝑡 > 0.008856

 

 

and 𝑋𝑛 , 𝑌𝑛 , 𝑍𝑛  describe a specified white object-color 

stimulus. 

An average of all pixels across three color spaces in the 

target image was employed as a corresponding color 

evaluation indicator for the image. In this context, mean values 

of RGB mode images are denoted as R, G, and B respectively. 

Similarly, mean values for HSI and Lab* mode images are 

denoted as H, S, I, L, a*, and b* respectively. The formula to 

calculate the image mean index, denoted as µ, is presented in 

Eq. (12): 

 

 

𝜇 =
1

𝑀𝑁
∑∑𝑃(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 
(12) 

 

where, M and N represent the rows and columns of effective 

pixels in the target image, and 𝑃(𝑖, 𝑗)  represents the color 

grayscale value of the effective pixels. 

In the realm of image analysis, a rise in color difference 

amongst effective pixels in an image corresponds to an 

increase in standard deviation for the same image feature. 

Thus, the standard deviation of the color of effective pixels has 

been utilized as an index of significance, as shown in Eq. (13). 

 

𝜎 = √1/𝑀𝑁∑∑[𝑃(𝑖, 𝑗) − 𝜇]2
𝑁

𝑗=1

𝑀

𝑖=1

 (13) 

 

Innovative indicators, derived from interactive processing 

or arithmetic combinations of basic color indicators, exhibit a 

more stable and closely related relationship with the 
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chlorophyll content in plant leaves [1]. Previous literature [17-

21] and multiple experimental studies have facilitated the 

selection of a combined set of indicators for the detection of 

mineral nutrient content in wheat, namely: R-G, R+B, R-G-B, 

R+G-B, NRI, NBI, NGI, and DGCI. The corresponding 

formulas are shown in Eqns. (14)-(17). 

 

𝑁𝑅𝐼 =
𝑅

𝑅 + 𝐺 + 𝐵
 (14) 

 

𝑁𝐺𝐼 =
𝐺

𝑅 + 𝐺 + 𝐵
 (15) 

 

𝑁𝐵𝐼 =
𝐵

𝑅 + 𝐺 + 𝐵
 (16) 

 

𝐷𝐺𝐶𝐼 =

(𝐻 − 60)
60⁄ + (1 − 𝑆) + (1 − 𝐼)

3
 (17) 

 

2.3 Analysis of modeling approaches 

 

2.3.1 Regression via XGBoost 

The employment of the XGBoost algorithm, a sophisticated 

version of the gradient boosting algorithm, has been evidenced 

as enhancing the realm of plant nutrient diagnosis through 

image analysis. In contrast to parallel computing algorithms 

like random forests, XGBoost implements a sequential 

operation, constructing and evaluating trees one after another. 

This approach enables a detailed and precise model to be built, 

augmenting the accuracy of plant nutrient diagnoses. The 

gradient boosting algorithm has applications in both 

regression and classification problems, and it should be noted 

that the internal decision tree utilized by XGBoost is a 

regression tree. 

 

2.3.2 Regression via K-Nearest Neighbor (KNN) 

The KNN algorithm, a relatively uncomplicated machine 

learning method, is versatile enough to handle both 

classification and regression tasks. In the context of image-

based plant nutrient diagnosis, the algorithm can classify or 

predict plant nutrient statuses based on color features extracted 

from images. In classification, the nutrient status of a plant is 

determined by the most frequently occurring nutrient status 

amongst its k-nearest neighbors in the feature space. For 

regression problems, the mean nutrient content of its k-nearest 

neighbors is used to predict the plant's nutrient content. This 

approach enhances the accuracy and efficiency of plant 

nutrient status diagnoses, improving the efficacy of nutrient 

management strategies. 

 

2.3.3 Regression via Lasso 

The Lasso method, also known as the Least Absolute 

Selection and Shrinkage Operator, applies a shrinkage 

estimation technique that compacts variable coefficients and 

sets specific regression coefficients to zero through the 

construction of a penalty function. This technique results in 

variable selection and mitigates the overfitting problem 

commonly associated with standard linear regression. In 

image-based plant nutrient diagnosis, Lasso regression can be 

deployed to select the most significant color features from 

images for the prediction of plant nutrient status. By reducing 

the coefficients of less relevant features to zero, Lasso 

regression effectively diminishes the feature space's 

dimensionality and prevents overfitting, which in turn, 

improves the model's generalizability and predictive accuracy. 

 

2.3.4 Regression via Multilayer Perceptron (MLP) 

MLP, also referred to as an Artificial Neural Network 

(ANN), is a type of neural network characterized by the 

potential to incorporate multiple hidden layers, in addition to 

input and output layers. In an MLP, complete connectivity is 

maintained between layers, with the lowermost layer serving 

as the input layer, the middle layers functioning as hidden 

layers, and the final layer acting as the output layer. Within the 

context of image-based plant nutrient diagnosis, MLP can be 

employed to discern intricate patterns in color features 

extracted from images for predicting plant nutrient status. The 

input layer receives the color features, the hidden layers learn 

and represent the intricate relationships between these features 

and the nutrient status, and the output layer provides the 

predicted nutrient status. By learning these complex patterns, 

MLP effectively models the non-linear relationships between 

color features and nutrient status, enhancing the predictive 

accuracy of the model. 

 

 

3. RESULTS 

 

3.1 Image segmentation and feature extraction 

 

The conducted study presented significant strides in the 

field of image segmentation and feature extraction. Firstly, an 

implementation of the OTSU algorithm was necessitated to 

cluster grayscale levels within an image. A grayscale 

histogram was calculated for the image, which displayed 

Dioscorea leaves under laboratory conditions. The challenging 

lighting conditions and nebulous background rendered shadow 

segmentation at the junction of foreground and background in 

the RGB image challenging. As a result, an extraction of the 

H component histogram from the image was performed and 

subsequent analysis of its peak changes was undertaken. It was 

concluded that segmentation was more feasible within the H 

component, a finding illustrated in Figure 2. Figure 3 presents 

the H-component grayscale image of the Dioscorea leaves. 

The results of the target extraction in relation to the image in 

Figure 1, post feature extraction process per Section 2.2, are 

displayed in Figure 4. 

 

 
 

Figure 2. H-component grayscale histogram of leaves of 

Dioscorea 
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Figure 3. H-component grayscale image of Dioscorea leaves 

 

 
 

Figure 4. Extracted Dioscorea leaves  
 

The research assumed the existence of two pixel types in 

images: foreground pixels and background pixels, and the 

bimodal nature of the histogram was assumed. An optimal 

threshold for separating these two pixel types was determined 

through the intra-class variance method or the equivalent inter-

class variance. The H-component OTSU was used to segment 

the Dioscorea leaves, whereby the RGB image was converted 

into HIS space representation. Following this, the H 

component was extracted for image segmentation, and the 

segmented image was reconverted into RGB space 

representation (Figure 4). 

 

3.2 Correlation analysis between color features and SPAD 

 

Following this, an analysis of the correlation between color 

features and SPAD was conducted. First-order distance and 

second-order moments were extracted from RGB, HSI, XYZ, 

and Lab color spaces, giving rise to 54 color feature 

combinations, which included NRI, NGI, NBI, DGCI, among 

others. Table 1 details the correlation analysis between image 

feature values and SPAD. It was observed that the majority of 

color features exhibited a strong correlation with SPAD. The 

correlation between RGB space-normalized color features and 

SPAD surpassed that of color features without normalization 

operations, indicating that normalization can effectively 

mitigate light influence to some extent. Simultaneously, the 

eigenvalues of HIS space and Lab space demonstrated a strong 

correlation with SPAD. The correlation between color feature 

combinations and SPAD values was higher than that of single 

variables, suggesting that non-linear combinations between 

features can give a more accurate representation of leaf 

chlorophyll content. 

 

Table 1. Correlation analysis between image feature values and SPAD 

 
Features Correlation Features Correlation Features Correlation 

R -0.956 L -0.952 G-B -0.952 

G -0.946 a* 0.429 R+G-B -0.967 

B 0.427 b* -0.961 G/R 0.873 

SR 0.407 SL 0.712 G/B -0.640 

SG 0.576 Sa* 0.022 
(R-B)/(R+B) 

(R-G)/(R+G) 
-0.853 

SB 0.530 Sb* -0.134 (R-G)/(R+G) -0.869 

r -0.933 X -0.948 (G-B)/(G+B) -0.790 

g 0.754 Y -0.962 (R-B)/(R+G+B) -0.935 

b 0.795 Z -0.896 (R-G)/(R+G+B) -0.792 

Sr 0.814 SX -0.952 (G-B)/(R+G+B) -0.581 

Sg 0.898 SY -0.429 r-g-b -0.978 

Sb 0.813 SZ -0.961 r-g -0.878 

H 0.973 R-G-B -0.482 r-b -0.952 

S -0.798 R-G -0.126 g/r -0.900 

I -0.938 R-B -0.977 NRI -0.976 

SH 0.973 R+G -0.957 NGI 0.012 

SS 0.823 R+B -0.902 NBI 0.819 

SI 0.711 G+B -0.909 DGCI 0.940 

 

3.3 Color features and SPAD modeling results 

 

In this study, regression models for eigenvalues and SPAD 

were created using XGBoost, KNN, Lasso, and MLP 

algorithms. Nested cross-validation was employed due to the 

limited number of model samples and the significant issue of 

multicollinearity. The 10-fold outer cross-validation divided 

samples into 10 subsets for model performance evaluation 

(181/78, 182/77), while grid search was used for parameter 

optimization in the 10-fold inner cross-validation. The 

predicted results of each model, after 100 iterations, are given 

in Table 2, with the optimal prediction model result from MLP 

shown in Figure 5. 

The coefficients in these models symbolize the importance 

of the corresponding color features in predicting the nutrient 

status of plants. A larger coefficient indicates a stronger 

relationship between the color feature and the nutrient status. 

Therefore, the coefficients can offer insights into which color 

features are most indicative of the nutrient status, thereby 

guiding future studies in the feature extraction process. 

 

Table 2. Evaluation of prediction results of each model 

 
Model R2 RMSE 

XGBoost 0.978 2.505 

KNN 0.955 3.623 

Lasso 0.982 2.27 

MLP 0.984 2.155 
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Figure 5. The optimal prediction model result 

 

The results indicate that the MLP model surpasses other 

models in terms of prediction accuracy, as displayed in Figure 

5. This suggests that MLP can effectively learn complex, non-

linear relationships between color features and the nutrient 

status. However, these findings require further validation, and 

additional research is necessary to explore the potential of 

other machine learning algorithms in diagnosing plant nutrient 

status. 

 

3.4 Correlation analysis and modeling results between 

color features and N content 

 

In the current research, leaves from Dioscorea species were 

allocated into six categories based on their SPAD values to 

measure nitrogen content. Categories were established as 

[0,10), [10,20), [20,30), [30,40), [40,50), and [50,60), forming 

a matrix of 55*6 dimensions to capture nitrogen content 

against 54 eigenvalues, thus positing a many-to-one 

relationship between color features and nitrogen content. 

Table 3 showcases a moderate correlation between image 

color features and nitrogen content, although inferior to the 

correlation between color features and SPAD content. Lack of 

cross-validation due to restricted sample size necessitated the 

use of SL as a variable in the model given its robust correlation 

with nitrogen content. The developed model 

(N=0.934+0.002SL) yielded an adjusted R-square of 0.850, 

indicating that 85% of the variance in nitrogen content could 

be explained by this model. 

The coefficients, representative of the relevance of 

corresponding color features in nitrogen content prediction, 

highlight that larger coefficients symbolize stronger 

relationships. Thus, the coefficient values can guide future 

studies in selecting influential color features to predict 

nitrogen content. However, the study emphasizes the need for 

further investigation to validate the model and explore 

additional machine learning techniques for plant nutrient 

diagnosis. 

In considering the relationship between original RGB color 

features and nitrogen content, the correlation is not highly 

significant. Nonetheless, the SR second-order moment of the 

red component has a positive correlation with nitrogen content, 

represented by a correlation coefficient of 0.921. The XYZ 

color space, when evaluated from the perspective of color 

space, exhibits the highest correlation with leaf nitrogen 

content. Features X and Z, and leaf nitrogen content display a 

correlation exceeding 0.9. Similarly, correlation surpasses 0.9 

between Sr, H, SH, SL, and leaf nitrogen content, with SL 

exhibiting the most potent correlation at 0.938. 

Thus, the current study establishes a strong correlation 

between several color features and nitrogen content, offering 

insights for future studies and machine learning applications. 

However, it also underscores the need for expanded research, 

particularly with larger sample sizes and diverse algorithms to 

better understand and validate these relationships.

 

Table 3. Correlation analysis between image feature values and N 

 
Features Correlation Features Correlation Features Correlation 

R -0.898 L -0.875 G-B -0.828 

G -0.868 a* 0.293 R+G-B -0.872 

B 0.259 b* -0.869 G/R 0.844 

SR 0.921 SL 0.938 G/B -0.361 

SG 0.893 Sa* -0.247 
(R-B)/(R+B) 

(R-G)/(R+G) 
-0.667 

SB 0.386 Sb* 0.008 (R-G)/(R+G) -0.857 

r -0.893 X -0.905 (G-B)/(G+B) -0.612 

g 0.781 Y -0.894 (R-B)/(R+G+B) -0.784 

b 0.636 Z -0.901 (R-G)/(R+G+B) -0.808 

Sr 0.917 SX -0.875 (G-B)/(R+G+B) -0.409 

Sg 0.840 SY -0.293 r-g-b -0.872 

Sb 0.628 SZ -0.869 r-g -0.865 

H 0.914 R-G-B -0.841 r-b -0.820 

S -0.632 R-G -0.338 g/r -0.862 

I -0.898 R-B -0.875 NRI -0.874 

SH 0.914 R+G -0.887 NGI 0.148 

SS 0.660 R+B -0.903 NBI 0.648 

SI 0.875 G+B -0.898 DGCI 0.899 

 

3.5 Correlation analysis and modeling results between 

color features and P content 

 

In the investigation into the association between color 

features and phosphorus (P) content, the findings disclosed in 

Table 4 demonstrate notable similarities to the correlations 

between color features and nitrogen content. Specifically, nine 

features were identified, each possessing a significant 

correlation coefficient (|R|) exceeding 0.9. 

A distinction was noticed in the association between the 

green (G) component in the initial RGB color space and the 

leaf phosphorus content when contrasted with the nitrogen 
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content in the leaves, with a correlation of 0.9 being attained. 

The HSI color space was shown to hold the highest correlation 

with leaf phosphorus content from a color space perspective. 

Interestingly, the association between combination features 

and leaf phosphorus content exceeded the average correlation 

of the color space. 

The most considerable correlation with leaf phosphorus 

content was shown by the following features: G, H, SH, L, SX, 

R-B, R+G-B, r-g-b, and the Normalized Difference Vegetation 

Index (NRI). This aligns with the findings of the correlation 

analysis of color and fabric structure presented in the study by 

NUMBER:1 [1]. 

In Table 4, the Normalized Difference Vegetation Index 

(NRI), due to its highest correlation with P content, was 

selected for modeling. An adjusted R-squared (adjR2) of 0.819 

was achieved, reflecting a robust model fit. The model 

equation was formulated as: 

 

𝑃 = 2.029 − 1.928𝑁𝑅𝐼 (18) 

 

 

Table 4. Correlation analysis between image feature values and P 

 
Features Correlation Features Correlation Features Correlation 

R -0.891 L -0.900 G-B -0.896 

G -0.900 a* 0.467 R+G-B -0.905 

B 0.521 b* -0.894 G/R 0.878 

SR 0.487 SL 0.711 G/B -0.735    

SG 0.585 Sa* -0.040 
(R-B)/(R+B) 

(R-G)/(R+G) 
-0.786 

SB 0.639 Sb* 0.411 (R-G)/(R+G) -0.860 

r -0.898 X -0.880 (G-B)/(G+B) -0.729 

g 0.764 Y -0.894 (R-B)/(R+G+B) -0.863 

b 0.717 Z -0.844 (R-G)/(R+G+B) -0.796 

Sr 0.886 SX -0.900 (G-B)/(R+G+B) -0.519 

Sg 0.850 SY -0.468 r-g-b -0.914 

Sb 0.834 SZ -0.894 r-g -0.861 

H 0.906 R-G-B -0.883 r-b -0.875 

S -0.725 R-G -0.140 g/r -0.893 

I -0.889 R-B -0.908 NRI -0.925 

SH 0.906 R+G -0.899 NGI 0.049 

SS 0.730 R+B -0.852 NBI 0.745 

SI 0.799 G+B -0.886 DGCI 0.889 

 

Table 5. Correlation analysis between image feature values and K 

 
Features Correlation Features Correlation Features Correlation 

R -0.667 L -0.766 G-B -0.834 

G -0.772 a* 0.843 R+G-B -0.762 

B 0.882 b* -0.796 G/R 0.544 

SR 
0.244 

 
SL 0.469 G/B -0.877    

SG 0.267 Sa* -0.025 
(R-B)/(R+B) 

(R-G)/(R+G) 
-0.786 

SB 0.901 Sb* -0.784 (R-G)/(R+G) -0.943 

r -0.624 X -0.626 (G-B)/(G+B) -0.514 

g 0.331 Y -0.672 (R-B)/(R+G+B) -0.936 

b 0.923 Z -0.545 (R-G)/(R+G+B) -0.906 

Sr 0.609 SX -0.766 (G-B)/(R+G+B) -0.386 

Sg 0.851 SY -0.843 r-g-b -0.818 

Sb 0.944 SZ -0.796 r-g -0.521 

H 0.730        R-G-B -0.527 r-b -0.883 

S -0.929 R-G 0.407 g/r 0.586 

I -0.674 R-B -0.753 NRI -0.790 

SH 0.730 R+G -0.722 NGI 0.492 

SS 0.922 R+B -0.555 NBI 0.933 

SI 0.752 G+B -0.682 DGCI 0.677 

 

3.6 Correlation analysis and modeling results between 

color features and K content 

 

Presented in Table 5 are the Pearson correlation coefficients 

between the image attributes and the potassium (K) content. It 

was discovered that the association between leaf potassium 

content and color attributes exhibits a greater value, exceeding 

0.9, when compared to the correlations with nitrogen (N) and 

phosphorus (P). While the quantity of color attributes remains 

consistent, the highest absolute correlation coefficient 

(|R|max), standing at 0.944, is noticed between the Sb and leaf 

K content. 

Differing from the correlations with nitrogen and 

phosphorus, it was predominantly combination attributes such 

as (R-G)/(R+G), (R-B)/(R+G+B), (R-G)/(R+G+B), and NBI 

that manifested a stronger association with potassium. When 

analyzed from the perspective of color space, the best 

correlation with leaf potassium content was shown by RGB 

and HSI color spaces. 

Building upon the highest correlation with K content, 
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modeling was carried out using Sb. This model yielded an 

adjR2 of 0.865, formulated by the following equation: 

 

𝐾 = 1.249 − 0.021𝑆𝑏 (19) 

 

 

4. CONCLUSIONS 

 

The utilization of digital image processing technology and 

machine learning methodologies was explored in this study, 

with the primary objective of extracting targeted images of 

Dioscorea leaves. A total of 54 color feature values were 

computed using RGB, HSI, XYZ, and Lab color spaces. The 

established correlations between these color features and 

SPAD values, alongside nitrogen (N), phosphorus (P), and 

potassium (K) content in Dioscorea leaves were evaluated. 

It has been deduced from the findings that: 

(1) Chlorophyll content in Dioscorea leaves can be 

predicted effectively using digital image technology and 

machine learning methodologies. This offers a robust 

foundation for non-destructive testing of Dioscorea leaves. In 

the arena of nutrient content prediction, the MLP model 

showed superior performance compared to other tested 

methods, such as KNN, XGBoost, and Lasso. 

(2) A significant correlation was observed between color 

features and mineral nutrients. The process of normalization 

appears to diminish the influence of light on leaf 

characteristics, with the normalized RGB color space 

demonstrating a higher correlation with mineral nutrients than 

unnormalized color features. 

(3) Combining color features produced a higher correlation 

with mineral nutrient content in Dioscorea leaves than a single 

variable. This suggests that a non-linear combination of 

features provides a more comprehensive understanding of the 

chlorophyll content in Dioscorea leaves. It paves the way for 

future research into the construction of additional image color 

features to enhance the evaluation of crop nutrient content. 

(4) It should be noted that this study was conducted in a 

controlled laboratory environment. Therefore, future research 

should include the collection of leaf images in field prototypes, 

paving the way towards non-destructive and rapid detection of 

Dioscorea leaves. 
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