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Early detection of brain tumors (BTs) can save valuable lives. BTs classification is usually 

accomplished by using magnetic resonance imaging (MRI), which is commonly carried out 

earlier than definitive talent surgery. Machine learning (ML) strategies can assist 

radiologists to diagnose tumors barring invasive measures. One of the challenges of 

traditional classifiers is that they rely on informative hand-crafted features, which can be a 

time-consuming process to extract. We proposed fully automatic framework for BTs 

classification with weighted contrast-enhanced MRI images. The proposed framework 

includes an enhancement preprocessing to improve input images quality and a classification 

phase for images classification into three classes of tumors (meningioma, glioma and 

pituitary tumor) and ordinary cases. The model was built used “Lightweight Convolutional 

Neural Network (LWCNN)” that allows to automatically extract features. We tested the 

LWCNN model in two experiments. In the first one, the model has been tested with original 

datasets. We tested our proposed framework on the same dataset after enhancing the features 

of MRI images in the second experiment. As per the experiment results, it has been observed 

that the proposed framework achieves the desired outcome which demonstrates the 

effectiveness of our proposed framework. 
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1. INTRODUCTION

Billions of cells in human mind which makes evaluation 

very difficult. The central and peripheral nervous systems both 

include tumors that belong to the genetically, biochemically, 

and clinically diverse category known as pediatric brain 

tumors. In terms of incidence and mortality among pediatric 

malignancies, they are collectively the most frequent solid 

tumors in children and come in second place after leukemias. 

In USA, Individuals who are below 20 years of age are 

diagnosed with 2,200 intracranial pediatric brain tumors 

annually, accounting for 16.6% of all pediatric cancer 

diagnoses; 78% of these neoplasms are malignant in origin, 

while the other 21% are benign or have unknown behavior [1]. 

About 52% of these malignancies comprise astrocytoma, 21% 

are primitive neuroectodermal tumors (PNET), 15% are other 

gliomas, while 9% are ependymomas [1]. Another 6-10% of 

all pediatric cancers are neuroblastomas (NB), It is the most 

commonly occurring solid extracranial tumor of the nervous 

system, which develop in sympathetic ganglia and adrenal 

medulla that new cases account for around 650 in children per 

year in USA [2]. 

These extracranial tumors affect infants under the age of 

two in close to 50% of cases [3]. There is a possibility that 

these tumors have an origin that conflicts with some 

conventional wisdom on tumor development, considering the 

fact that most Pediatric brain tumors (PBTs) in children occur 

at a young age. The conventional wisdom that most 

malignancies take at least ten years to form. In fact, current 

studies are starting to point to an etiology that involves the 

interaction of early environmental variables with dysregulated 

developmental processes. 

In total, a hundred and fifty exceptional varieties of BT may 

be found in humans, which can be grouped into malignant and 

benign tumors. Benign tumors are discovered at earlier stage 

in the brain. Brain tumors are commonly referred to as 

malignant tumors due to the fact they are able to unfold outside 

the brain [4]. 

A biopsy is commonly finished to test if the tissue is 

malignant or benign. Some other places withinside the body, a 

BT biopsy is commonly acquired no earlier than a definitive 

mind surgical procedure [5]. In order to gain a correct analysis 

and keep away from surgical procedure and subjectivity, it's 

miles essential to broaden an energetic diagnostic device for 

segmentation of tumor and class from MRI [6]. 

MRI scans manual evaluation is time-consuming for 

knowledgeable physicians and radiologists, mainly in 

complicated instances [7]. In the complex instances regularly 
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require radiologists to examine tumor tissue to adjoining 

regions and beautify snapshots to enhance perceptual nice 

earlier than classifying tumor types. This scenario is 

impractical for huge quantities of data, and guide strategies 

aren't reproducible. Early detection of BT with excessive 

predictive accuracy is the maximum critical diagnostic step in 

an affected person's health [8]. 

In current years, some automatic structures were used to 

come across BTs use of MRI scans. Hsieh et al. [9] used 

specific techniques to categories BT into specific types, 

namely, place of interest (ROI) identification; extract function; 

and function choice observed through rating. They mixed 

neighborhood histology with worldwide histogram moments 

and quantified the glioma impact use of 107 images, seventy-

three low-grade images, and 34 high-quality (glioma) images. 

Sachdeva et al. [10] describe a computer-aided diagnostic 

(CAD) gadget that extracts color and texture capabilities from 

segmented ROIs and makes use of a genetic algorithm (GA) 

to pick the nice capabilities. However, these methods require 

sophisticated feature engineering to extract informative hand-

craft features for BT classification, which is sometimes very 

time-consuming. On top of that, their classification 

performances rely greatly on the quality of the designed hand-

craft features. 

Deep Learning (DL) has recently demonstrated excellent 

performance on varied tasks, like classification and 

segmentation of images in computer vision, and has also been 

utilized in analysis of medical image [11-13]. This work 

suggests a new approach using deep learning for fully 

automatic classification of BTs with weighted contrast-

enhanced MRI images. The proposed framework includes an 

enhancement preprocessing to improve input images quality 

and a classification phase for   images. Classification. The 

classification model was built based on (LWCNN) that allows 

for performing automatic classification in an end-to-end 

manner. 

 

 

2. RELATED WORKS 

 

Several methods have been used to categories MRI images 

[14, 15]. In 2022, Raza et al. [16] propose the use of a hybrid 

model called DeepTumorNet, which adopts a basic CNN 

architecture, for brain tumors (BTs) classification: glioma, 

meningioma, and pituitary tumor. Their model obtained 

99.67% accuracy. Kadry et al. [17] presented meningioma BT 

detection method by use of a fuzzy logic-based system and a 

U-Net. The proposed technique to stumble on meningioma 

tumors consists of the subsequent stages: amplification, 

function extraction, and class. Leo [18] proposed a way to 

detect BT from MRI scans. In their method, images were first 

enhanced by use of a mean filter. A K-way clustering 

technique was subsequently used to detect pixel region of 

brain tumor. After that, the GLCM techniques were utilized to 

extract features from BT`s MRI for classification based on K-

NN techniques. In some other works, classification has been 

performed on one-of-a-kind image databases, which can be 

small [19, 20]. To categorize four types of BTs (tumor-free, 

glioblastoma, sarcoma, and metastasis), Mohsen et al. [21] 

utilized 66 images and achieved an accuracy rate of 96.97% 

by utilizing a deep neural network. 

For the analysis, classification, and segmentation of images, 

many techniques and unique pre-skilled network changes have 

been proposed in the literature. Different approaches were 

investigated on several scientific datasets, each on MRI 

images of BTs and tumors from unique human body parts [22, 

23]. These publications were no longer taken into further 

consideration since the focus shifted to papers that made use 

of the same MRI image database we used. Deep learning 

algorithms now frequently calculate the best statistical 

characteristics thanks to the advancement of machine learning 

methods over the past few years. The models of deep learning 

are frequently used to classify MRI scans with the goal of 

diagnosing BTs [24]. Pereira et al. [25] presented (CNN)-

based approach for binary classification of brain tours. Their 

models produce an accuracy of 89.5% and 92.9% for tumor 

and background, respectively. Abiwinanda et al. [26] proposed 

another CNN-based method to classify images of the brain into 

three categories with average classification accuracy  

84.19%. However, the performance of BT classification is still 

unsatisfying. 

In the proposed framework, we utilizing an enhancement 

preprocessing for MRI images quality enhancement to 

increase the performance of classify images into three tumors 

classes. (LWCNN) is used to build the classification model 

that allows to automatically extract features. The model has 

been tested with original datasets. and the same dataset after 

enhancing the features of MRI images. The results of our 

experiment indicate that the proposed approach yields higher 

accuracy, thereby demonstrating its effectiveness. 

 

 

3. METHODOLOGY 

 

In this paper, the proposed framework includes an image 

enhancement and classification steps, as shown in Figure 1. 

The image enhancement step is employed to improve the 

contrast of the brain tumor region and the irrelevant 

background. The extraction & classification step is to 

automatically extract informative features and classify MRI 

images. In the subsequent subsections, we will introduce the 

two steps one by one. 

 

 
 

Figure 1. Methodology overview 

 

The first step in our proposed framework is image 

enhancement using a variety of image-editing techniques, such 

as an unsharp filter and a histogram equal. The processing 

procedures are described as follows. In this stage, we used the 

identical prior images that had been enhanced using a variety 

of image-editing techniques, such as the Unsharp filter and 

Histogram equal, to create a new presentation of the dataset 

[27], as shown in Figure 2, that presents the images more depth. 

The techniques of image modification are unsharp filter and 

histogram equal. 

By subtracting from the original image an unsharp or 

smoothed version of it, the unsharp filter is a fundamental 

sharpening operator that serves to enhance edges [28, 29]. In 

order to produce sharper edges, the process of unsharp filtering 
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is frequently employed in the printing and photographic 

industries. Equation 1 is used in unsharp masking to create an 

image edge f(x, y) from an input f(x, y). 

 

𝑔 (𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓 𝑠𝑚𝑜𝑜𝑡ℎ (𝑥, 𝑦) (1) 

 

The effect of the unsharp filter on the image at the location 

(x, y) will depend on the surrounding pixel values in the image. 

If there are edges or details in the image near the location (x, 

y), the filter will enhance them, making them appear sharper 

and more defined. However, if the image at that location is 

already sharp or if there are no edges or details nearby, the 

filter may have little or no effect. 

The histogram equalization is the second step that utilized 

to modify the intensities of brain tumors MRI images to 

improve contrast. The technique of representing an image with 

a limited range of intensity values can effectively enhance the 

overall contrast of multiple images. This technique can 

significantly improve the visibility of bone structure in MRI 

images of brain tumors and also enhance the details of 

photographs that are either under or over-exposed. This 

modification leads to a more uniform distribution of intensities 

on the histogram, utilizing the entire range of available 

intensities. As a result of this technique, regions with lower 

local contrast can gain a significant increase in contrast. This 

is accomplished through histogram equalization  approach, 

which effectively disperses the densely populated intensity 

values that previously reduced visual contrast [28, 30]. In 

Figure 2, example of the applied image enhancement 

approaches to improve the image quality. 

 

 
 

Figure 2. The processing applied to datasets 

 

 
 

Figure 3. Architecture of the designed LWCNN 

 

In the second step of our proposed framework, a lightweight 

CNN (LWCNN) was designed to improve perform the feature 

extraction and BT classification with low numbers of 

parameters. LWCNN is an architecture that is designed to be 

computationally efficient and have a small memory footprint, 

making it well-suited for deployment on mobile devices and 

other resource-constrained platforms. 

There are many different architectures for lightweight 

CNNs, but they typically involve a combination of several 

design techniques, such as a reduction in model size, spatial 

reduction, depth wise separable convolution, pruning and 

quantization. 

The goal of these design techniques is to accomplish  a good 

trade-off among model accuracy and computational efficiency, 

making it possible to run the network on resource-limited 

devices with minimal latency and power consumption. 

In Figure 3, the architecture of LWCNN is shown. It 

includes five convolutional blocks, each block contains a batch 

normalization layer, max-pooling layer and Leaky ReLU layer. 

The details of LWCNN are presented in Table 1. 

 

Table 1. Details of the proposed LWCNN model 

 

Name of layer Decimation 
# Of 

Filter 
Padding Stride 

Input 224 224 3    

Conv1 3 3 8 Same  

batch 

normalization 
    

leaky ReLU 0.01 1   

max-pooling 2 2   2 2 

Conv2 3 3 16 Same  

batch 

normalization 
    

leaky ReLU 0.01    

max-pooling 2 2   2 2 

Conv3 3 3 32 Same  

batch 

normalization 
    

leaky ReLU 0.01    

max-pooling 2 2   2 2 

Conv4 3 3 16 Same  

batch 

normalization 
    

leaky ReLU 0.01    

max-pooling 2 2   2 2 

Conv5 3 3 8 Same  

batch 

normalization 
    

leaky ReLU 0.01    

max-pooling 2 2   2 2 

Fully Connect 4 

Softmax 0 or 1 or 2 or 3 

Classification 
Glioma or meningioma or no_tumor or 

pituitary 

 

LWCNN model is a kind of feed-forward neural network. 

The utilization of convolutions to capture translation 

invariance can significantly reduce the parameters numbers 

required, as the filter becomes independent of position. 

Convolutional, pooling, and fully linked layers make up the 

CNN model. These layers carry out a variety of tasks, 

including feature extraction, dimensionality reduction, and 

classification. In the convolution process of the forward pass, 

the filter slides over an input shape and computes a map of 

activation, which determines the point-wise value of every 

output [30].  

The technique of batch normalization is employed to train 

deep neural networks effectively by normalizing the 

contributions to each layer for every mini-batch. In deep 

learning, constructing a neural network with multiple layers 
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can be challenging due to the architecture of the learning 

algorithm and the underlying random weights in the initial 

setup. An underlying reason for this problem could be that 

resetting weights after each mini-batch can cause a shift in the 

distribution of inputs to the lower layers of the network, 

making the learning system continuously chase a moving 

target. The alteration in the input distribution to network layers 

caused by weight resetting is commonly known as internal 

covariate shift. The challenge arises from the fact that the 

model is updated layer-by-layer in reverse order, from the 

input to the output, while assuming that the weights in the 

preceding layers remain constant [31, 32]. 

To improve performance of deep neural networks, we 

incorporate batch normalization, which involves scaling the 

output of each layer. Recall that the term "normalization" 

refers to rescaling data so that the standard deviation and mean 

are both zero. The fixed input distributions that would 

eliminate the negative impacts of internal covariate shift might 

be achieved by brightening the inputs to individually layer. By 

normalizing the activations of the previous layer, the 

assumption that the following layer makes regarding the 

spread and distribution of inputs during weight update will 

remain relatively constant, if not entirely unchanged. The 

differences in the normalized inputs between training and 

inference might result in observable differences in 

performance for smaller mini-batches that don't contain an 

appropriate distribution of models from the training dataset. 

To address this issue, a modification to the existing technique 

called Batch Renormalization has been developed. It aims to 

stabilize the estimates across mini-batches of the variable 

mean and standard deviation. 

Additionally, the benefits of batch normalization include: (a) 

Hyperparameter tuning has less impact on the model due to the 

implementation of this technique; (b) smaller internal 

covariant shift; (c) decreasing the dependence of gradients on 

the parameters scale or underlying values; (d) At this juncture, 

weight initialization is marginally less crucial due to the 

application of this technique; and (e) dropout can be 

eliminated for regularization. 

“ReLU” is one of the most common activation functions 

utilized in neural networks. Researchers often incorporate this 

technique between layers to introduce nonlinearity and better 

handle datasets that are more complex and nonlinear in nature. 

Figure 4 shows ReLU that can be stated as in Eq. (2): 

 

𝑓(𝑥, 𝑦) = {
0.01     ∀  𝑥 < 0
𝑥           ∀  𝑥 > 0

 (2) 

 

 
 

Figure 4. ReLU 

 

Despite its popularity, particularly on DNN, ReLU has 

certain drawbacks. ReLU is not continuously differentiable, to 

start. Gradient cannot be calculated at x=0. Although it is not 

a major issue, it has a little impact on training effectiveness. 

All values are reset to zero by ReLU. However, since gradient 

of zero is zero, neurons arriving at high negative values cannot 

recover from being trapped at 0, which might be advantageous 

for sparse input. Since the neuron effectively dies, the issue is 

referred to as the dying ReLU problem.  

 

 
 

Figure 5. Leaky ReLU 

 

As a result, the network can effectively cease learning and 

perform poorly. Even though input values are fed to the neural 

network, the sum of input to the traditional ReLU is always 

negative despite the weights being appropriately initialized to 

small random values and large weight updates. The problem is 

not entirely solved, but current advancements in the ReLU, 

like the leaky LReLU that enables a greater degree of 

nonlinearity, allowing for the inclusion of small negative 

values or facilitating the transition from positive to small 

negative values. The aim of using the Leaky LReLU is to 

address these issues into a ReLU function by providing a small 

negative gradient for negative inputs. Figure 5 and Eq. (3) 

demonstrate the LReLU and its derivative. 

 

𝑓(𝑥, 𝑦) = {
  0∀       𝑥 < 0

   𝑎𝑥∀      𝑥 > 0
 (3) 

 

where, alpha is a small constant, typically around 0.01. If pixel 

value at location (x, y) is positive, then the Leaky ReLU 

function returns the pixel value unchanged. However, if the 

pixel value is negative, the function returns alpha times the 

pixel value. 

The effect of the Leaky ReLU function on the image at 

location (x, y) depends on the pixel value at that location. If 

pixel value is positive, the function has no effect and returns 

the pixel value unchanged. If the pixel value is negative, the 

function applies a small negative slope to the pixel value, 

which can help prevent the gradient from vanishing during 

backpropagation in a neural network. 

Max pooling selects only the highest activation value, while 

average pooling downplays the activation by combining the 

non-highest activations. This issue was addressed by 

Santurkar et al. [33] who suggested a hybrid strategy that 

included average pooling and maximum pooling. Dropout [34] 

and Drop Connect [35] are two major influences on this 

strategy. Eq. (4) may be used to represent mixed pooling. 

 

𝑠𝑗 = 𝜆 𝑚𝑎𝑥 𝑎𝑖 + (1 − 𝜆)
1

𝑅𝑗
∑ 𝑎𝑖

𝑖 ∈ 𝑅𝑗

 (4) 

 

The selection between max pooling and average pooling is 

determined by the value of 𝜆, which is randomly assigned 
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either a value of 0 or 1. If 𝜆=0, the operation functions as 

average pooling, and if 𝜆=1, it functions as max pooling. The 

value of 𝜆 is saved for the forward-propagation phase and is 

utilized during the backpropagation process. 

 

 

4. EXPERIMENTS AND PERFORMANCE ANALYSIS 

 

4.1 Dataset 

 

Dataset used to evaluate our proposed method was acquired 

from Kaggle [36]. This dataset is a combination of the 

following from three datasets; figshare, SARTAJ and Br35H 

datasets. It’s about 3160 images in the whole dataset, which 

are divided into a training dataset (80%) and a testing (20%). 

The numbers of images in the two sets are 2528 and 623, 

respectively. The numbers of images from the four classes in 

the training and testing sets are summarized in Table 2. 

 

Table 2. Characteristics of the dataset [36] 

 
Types Training Testing Sum 

glioma 

meningioma 

no_tumor 

pituitary 

741 

750 

317 

721 

185 

187 

79 

180 

926 

937 

396 

901 

Sum   3160 

 

The usage of the dataset was illustrated in Figure 6. The 

images were first pre-processed by resizing the original size 

to256×256×3 to reduce the input dimension of the designed 

LWCNN therefore the number of parameters of LWCNN and 

yield a lightweight CNN for this study. Subsequently, the MRI 

images were enhanced with the image enhancement technique 

[28]. Then the designed LWCNN was trained on pre-

processed images in the training set. 

 

 
 

Figure 6. Illustration of the use of the BT dataset 

 

4.2 Model training and evaluation metrics 

 

The LWCNN was implemented with MATLAB 2021a and 

trained on Windows 10 OS with 16 GB RAM, an AMD Ryzen 

5 3550H CPU, and GFX 2.10 GHz. The max iterations and 

batch size were set to 790 and 32, respectively. Our model 

trained for 10 epochs which every epoch contains 79 iterations 

that walk throughout the whole training set. 

The performance measurements employed in this work 

include accuracy, sensitivity, specificity, and precision [37, 

38], which are the most often used metrics and are stated as 

follows in Eqns. (5)-(9): 

 

Accurac =
𝑇 𝑁 +  𝑇 𝑃

𝑇 𝑃 +  𝐹 𝑃 +  𝑇 𝑁 +  𝐹 𝑁
 (5) 

 

Sensitivity =
𝑇 𝑃

𝑇 𝑃 +  𝐹 𝑁
 (6) 

 

Specificity =
𝑇 𝑁

𝑇 𝑁 +  𝐹 𝑃
 (7) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (9) 

 

4.3 Experiment results 

 

The trained LWCNN was evaluated on the testing set. To 

demonstrate the effectiveness of the image, enhancement step 

in our proposed framework, we also generate results with the 

same pipeline except for disabling the enhanced process for 

comparison. The results related to these two settings are shown 

in Tables 3 and 4, respectively. 
 

Table 3. Testing results of our proposed framework 

 

Table 4. Testing results without image enhancement 
 

Note: Ac=Accuracy, Pre=Precision, Sen=Sensitivity, Spe=Specificity Fm=F-

measure. 

 

It can be concluded from Table 3, that our approach can 

achieve accurate BTs classification performances in terms of 

accuracy, precision, sensitivity, specificity and F-measure for 

all four classes. Specifically, the F-measure for the four classes 

is 92%, 91%, 93%, and 99%, respectively. In addition, 

compared to the pipeline without an image enhancement 

process, the proposed method shows much better performance. 

Specifically, without the image enhancement step, the F-

measure scores of the proposed approach drop by 88%, 84%, 

84%, and 95%, respectively. This proves that image 

enhancement is critical for improving the prediction 

performance of the model. 
 

 
 

Figure 7. Confusion matrix related to testing results with 

image enhancement 

Fm% Spe% Sen% Pre% Ac% Class 

92 

91 

93 

99 

94 

98 

99 

99 

97 

87 

91 

100 

87 

95 

96 

98 

95 

95 

98 

99 

glioma 

meningioma 

no_tumor 

pituitary 

Fm% Spe% Sen% Pre% Ac% Class 

88 

84 

84 

95 

94 

95 

98 

96 

89 

81 

80 

100 

86 

88 

89 

91 

92 

91 

96 

97 

glioma 

meningioma 

no_tumor 

pituitary 
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Figure 8. Confusion matrix without image enhancement 

To further validate the methods, we analyze the confusion 

matrices related to the testing results. The confusion matrices 

related to the setting with image enhancement and that without 

image enhancement are shown in Figures 7 and 8 respectively. 

By comparing the Figures 7 and 8, we can see that with the 

image enhancement, our approach is able to make predictions 

that cause less confusion across different classes. This further 

validates the effectiveness of the enhancement in the pipeline. 

Finally, to investigate the reason for the performance 

improvement caused by image enhancement step, we plot the 

accuracy and loss curves in the model training process for the 

two settings. The curves for the two settings were shown in 

Figures 9 and 10. 

Figure 9. Accuracy and loss curves for the setting with 

image enhancement 

Figure 10. The accuracy and loss curves for the setting 

without image enhancement 

It can be observed in Figures 9 and 10 that training and 

validation accuracy curves are much closer in Figure 9 than 

those in Figure 10. The same trends can be observed on the 

loss curves in the two figures. These results show that image 

enhancement process is able to align the distributions of image 

samples in the training dataset and in the validation (testing) 

set, therefore greatly improving the performance of a deep 

learning model trained on a training set, when applied on a 

testing set. This proved that image enhancement is an 

important process for training our LWCNN model on the BT 

dataset. 

We evaluated the performance of our proposed WLCNN 

method against state-of-the-art techniques in the literature. 

The comparative analysis revealed that the hybrid WLCNN 

approach outperformed these methods, demonstrating its 

superior efficiency as depicted in Table 5. 

Table 5. The comparative results 

Ac. Method year Ref 

95.23 

92.98 

84.00 

96.00 

95.86 

96.75 

GWO+M-SVM 

CNN 

CNN 

CNN 

CNN 

LWCNN 

2016 

2018 

2018 

2019 

2022 

---- 

[10] 

[24] 

[26] 

[7] 

[25] 

PM 

5. CONCLUSIONS

In this study, we presented framework based on deep 

learning for fully automatic BT classification with weighted 

enhanced MRI images. The proposed framework includes an 

image enhancement step for MRI quality improvement and a 

lightweight convolutional neural network (LWCNN). We 

evaluated our proposed method using a publicly accessible set 

of MRI brain images. It shows accurate classification 

performances in terms of accuracy, precision, sensitivity, 

specificity, and F-measure. This demonstrate that the proposed 

approach holds great promise to be applied in clinical 

applications. In addition, our studies show that an image 

enhancement process is helpful for training a deep learning 

model for BT classification since it allows homogenizing of 

samples distribution from the training set and from the testing 

set. 
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